Face Recognition
Project description
Face Recognition
Simple library to recognize faces from given images
Face Recognition pipeline
Below the pipeline for face recognition:
- Face Detection: the MTCNN algorithm is used to do face detection
- Face Alignement Align face by eyes line
- Face Encoding Extract encoding from face using FaceNet
- Face Classification Classify face via eculidean distrances between face encodings
How to install
pip install git+https://github.com/paoloripamonti/face-recognition
How to train custom model
Initialize model
from face_recognition import FaceRecognition
fr = FaceRecognition()
Train model with pandas DataFrame:
fr = FaceRecognition()
fr.fit_from_dataframe(df)
where 'df' is pandas DataFrame with column person (person name) and column path (image path)
Train model with folder:
fr = FaceRecognition()
fr.fit('/path/root/')
the root folder must have the following structure:
root\
Person_1\
image.jpg
...
image.jpg
Person_2\
image.jpg
...
image.jpg
...
Save and load model
you can save and load model as pickle file.
fr.save('model.pkl')
fr = FaceRecognition()
fr.load('model.pkl')
Predict image
fr.predict('/path/image.jpg')
Recognize faces from given image. The output is a JSON with folling structure:
{
"frame": "image data", # base64 image with bounding boxes
"elapsed_time": time, # elapsed time in seconds
"predictions": [
{
"person": "Person", # person name
"confidence": float, # prediction confidence
"box": (x1, y1, x2, y2) # face bounding box
}
]
}
Example
For more details you can see: https://www.kaggle.com/paoloripamonti/face-recogniton