Skip to main content

Package to build universes for factor pricing model

Project description

Factor Pricing Model Universe

CI Status Documentation Status Test coverage percentage

Poetry black pre-commit

PyPI Version Supported Python versions License

Package to build universes for factor pricing model. For further details, please refer to the documentation

Installation

Install this via pip (or your favourite package manager):

pip install factor-pricing-model-universe

Usage

The library contains the pipelines to build the universe. You can run the pipelines interactively in Jupyter Notebook.

from fpm_universe import pipeline

Alternatively, for scheduled runs, you can create a configuration and run the command line entry point to create the universe.

Configuration

The configuration is in yaml format and contains a few inputs

Name Description
output_filename Output filename
intermediate_directory Intermediate directory to export the pipeline outputs
start_datetime Start datetime of the universe
last_datetime Last datetime of the universe
frequency Frequency of the universe. For further details, please see the "Offset aliases" in pandas documentation
pipeline List of pipelines to filter the universe
data Defines the data used by pipeline, or referred by yaml tag !data

Each pipeline returns a pandas dataframe indicating if the instrument is included into the universe on the specified date / time. For example, the pipeline returns the following dataframe

+------------+--------+-------+
|    date    |  AAPL  | GOOGL |
+------------+--------+-------+
| 2022-11-17 |  True  | False |
+------------+--------+-------+
| 2022-11-18 |  True  |  True |
+------------+--------+-------+

and it indicates AAPL is included in the universe on both 2022-11-17 and 2022-11-18 while GOOGL only on 2022-11-18.

By default, the pipeline functions are imported from module fpm_universe.pipeline.

Each data defines the method to retrieve from the source, or the operator on the source data. The return type of each data is unconstrained. It can be a json-like dict, a list, a pandas series, or even a pandas dataframe.

In the configuration, Each data can be referred by yaml tag !data, and it is loaded in lazy only when it is referred by another data object or a pipeline.

Command

The entry point factor-pricing-model-universe is to generate the universe regarding the given configuration to the destination, with dynamically passing the parameters to format the configuration.

The arguments of the entry point are

Argument Description
-c, --config TEXT Required. Configuration file path.
-p, --parameter TEXT Parameters to be formatted in the configuration.

For example, given the configuration as follows,

output_filename: "{output_directory}/{date}.parquet"
intermediate_directory: "{output_directory}/{date}"
start_datetime: "2015-01-01"
last_datetime: "{date}"
frequency: "B"
pipeline:
  - name: range_validity
    function: range_validity
    parameters:
      values: !data initial_validity
data:
  symbols:
    function: jq_compile
    parameters:
      json_filename: "{data_directory}/index/sp500/default/{date}.json"
      pattern: "[.[] | .tickers[]] | sort | unique | .[]"
  initial_validity:
    function: jq_compile
    parameters:
      json_filename: "{data_directory}/listings/{date}.json"
      pattern: ".[] | {{ symbol: .symbol, valid_start_datetime: .ipoDate, valid_last_datetime: .delistingDate }}"
      includes:
        symbol: !data symbols

and run the following command

factor-pricing-model-universe \
  --config <path> \
  --parameter output_directory=$HOME/output \
  --parameter data_directory=$HOME/data \
  --parameter date=2022-10-20

the universe dataframe is output to $HOME/output/2022-10-20.parquet (formatted with the parameter output_directory and date).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

factor_pricing_model_universe-2024.0.0.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file factor_pricing_model_universe-2024.0.0.tar.gz.

File metadata

  • Download URL: factor_pricing_model_universe-2024.0.0.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/42.0 requests/2.31.0 requests-toolbelt/1.0.0 urllib3/1.26.5 tqdm/4.66.1 importlib-metadata/6.8.0 keyring/24.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.12

File hashes

Hashes for factor_pricing_model_universe-2024.0.0.tar.gz
Algorithm Hash digest
SHA256 66aa6639398f6ee0dc5ad705c36c1671e1ce1e681f46c3505797cf42053c7b98
MD5 9794f8e74ef2e58687bfd57806504ce0
BLAKE2b-256 755b9ee94d167e8755d030efa3859f6a6cb4f2b6d180b3a9f1055a4ba21ce357

See more details on using hashes here.

File details

Details for the file factor_pricing_model_universe-2024.0.0-py3-none-any.whl.

File metadata

  • Download URL: factor_pricing_model_universe-2024.0.0-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/42.0 requests/2.31.0 requests-toolbelt/1.0.0 urllib3/1.26.5 tqdm/4.66.1 importlib-metadata/6.8.0 keyring/24.3.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.12

File hashes

Hashes for factor_pricing_model_universe-2024.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 10beeab4f4005046db12b5278e8f9fdb32c7d621e7333f3503b0beae4950d3cf
MD5 ffaa01a2e8b3af24fa445bac376a5345
BLAKE2b-256 eb855471e42edb473ba0eb1ed227eea986f11dec17cbdd1d9303ed4a92ab6ac5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page