Skip to main content

Python SDK combining FAI API modules

Project description

Fotographer.ai sdk modules

Installation

Install the SDK using pip:

pip install fai-gensdk

Usage of InstantLight

Here’s an example of how to use the InstantLight SDK to make an API call and handle the response:

from InstantLight import InstantLightSDK
from PIL import Image
import base64
from io import BytesIO

# Initialize the SDK
sdk = InstantLightSDK(
    base_url='https://api.fotographer.ai/instantLight',
    api_key='your_api_key',
    email='your_email@example.com'
)

# Convert images to base64
def image_to_base64(image_path):
    with Image.open(image_path) as img:
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')

# Prepare the image data
foreground_image64 = image_to_base64('path_to_foreground_image.png')
background_image64 = image_to_base64('path_to_background_image.png')

# Example mode 0: Edit Light With a Prompt
# Mode 0 is used to edit the light in an image using a prompt.
image_data_mode_0 = {
    "foreground_image64": foreground_image64,
    "background_image64": background_image64,
    "prompt": "",
    "mode": 0,
    "prompt_strength": 3.0,
    "inf_factor": 1.00,
    "mask_strength": 0.5,
    "image_width": 1400,
    "image_height": 1400,
    "additional_prompt": "",
    "negative_prompt": "",
    "lights": []  # leave as blank here for 
}

# Example mode 1: Edit Light With a Prompt
# Mode 1 is used to edit the light in an image using a prompt.
image_data_mode_1 = {
    "foreground_image64": foreground_image64,
    "background_image64": background_image64,
    "prompt": "neon light",
    "mode": 0,
    "prompt_strength": 3.0,
    "inf_factor": 1.00,
    "mask_strength": 0.5,
    "image_width": 1400,
    "image_height": 1400,
    "additional_prompt": "",
    "negative_prompt": "",
    "lights": []  # Specify the lighting parameters as needed 
    #for example:
    #"lights": [{"light_position": [0.5, 0.5],"light_intensity": 0.8,"light_z": 0.3,"color": [255, 200, 150],"presets": "Light1"},{"light_position": [0.2, 0.8],"light_intensity": 0.5,"light_z": 0.1,"color": [100, 100,255],"presets": "Light2"}]
}

# Example mode 2: Edit Light and Change Background
# Mode 2 is used to edit the light and change the background of an image.
image_data_mode_2 = {
    "foreground_image64": foreground_image64,
    "background_image64": background_image64,
    "prompt": "sunset background",
    "mode": 2,
    "prompt_strength": 3.0,
    "inf_factor": 1.00,
    "mask_strength": 0.5,
    "image_width": 1400,
    "image_height": 1400,
    "additional_prompt": "",
    "negative_prompt": "",
    "lights": []  # Specify the lighting parameters as needed
    #for example:
    #"lights": [{"light_position": [0.5, 0.5],"light_intensity": 0.8,"light_z": 0.3,"color": [255, 200, 150],"presets": "Light1"},{"light_position": [0.2, 0.8],"light_intensity": 0.5,"light_z": 0.1,"color": [100, 100,255],"presets": "Light2"}]
}

# Select the desired mode for the example
image_data = image_data_mode_2

# Make the API call
response = sdk.image_generation.get_image_gen(image_data)

# Print the response keys for debugging
print("Response Keys:", response.keys())

# Print the keys at all levels of the response for debugging
for key, value in response.items():
    if isinstance(value, dict):
        print(f"Response[{key}] Keys: {value.keys()}")

# Save the image and mask image if they exist in the response
if 'image' in response:
    image_data = response['image']
    image_bytes = base64.b64decode(image_data)
    image = Image.open(BytesIO(image_bytes))
    image.save("output_image.png")
    print("Image retrieved and saved as output_image.png.")
    
    if 'mask_image' in response:
        mask_data = response['mask_image']
        mask_bytes = base64.b64decode(mask_data)
        mask_image = Image.open(BytesIO(mask_bytes))
        mask_image.save("output_mask_image.png")
        print("Mask retrieved and saved as output_mask_image.png.")
else:
    print("Response does not contain 'image'")

Make sure to update your_api_key and your_email@example.com with the actual values in the example usage section.

Usage of ImageGen

from FAImageGen import ImageGen as FAImageGenSDK
from PIL import Image
import base64
from io import BytesIO

# Initialize the SDK API
api = FAImageGenSDK(
    base_url='https://api.fotographer.ai/Image-gen',
    api_key='your_api_key',
    email='your_email@example.com'
)

# Convert images to base64
def image_to_base64(image_path):
    with Image.open(image_path) as img:
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')



# Prepare the image data
image_path = 'path_to_your_image.png'
prompt = 'a black perfume bottle on top of mounntain in front of the sea'

# Make the API call
response = api.image_generation.get_image_gen(image_path, prompt)

try:
    # Make the API call
    response = api.image_generation.get_image_gen(image_path, prompt)

    # Print the response keys for debugging
    #logging.debug("Response Keys: %s", response.keys())

    # Print the keys at all levels of the response for debugging
    for key, value in response.items():
        if isinstance(value, dict):
            logging.debug(f"Response[{key}] Keys: %s", value.keys())

    # Save the image and mask image if they exist in the response
    if 'image' in response:
        logging.debug("Success")
    else:
        logging.debug("Response does not contain 'image'")

except requests.exceptions.RequestException as e:
    logging.error(f"HTTP error occurred: {e}")
    if hasattr(e, 'response') and e.response is not None:
        logging.error(f"Response content: {e.response.content}")
except Exception as e:
    logging.error("An unexpected error occurred: %s", e)

Usage of Background Removal

from FAImageGen import ImageGen
from PIL import Image
import base64
from io import BytesIO

# Initialize the SDK API
api = ImageGen(
    base_url='https://api.fotographer.ai/Image-gen',
    api_key='your_api_key',
    email='your_email@example.com'
)

# Image path for the background removal
image_path = 'path_to_your_image.png'

# Remove the background
bg_removed_image = api.image_generation.remove_background(image_path)

# Save the background-removed image if it exists in the response
if 'image' in bg_removed_image:
    image_data = bg_removed_image['image']
    image_bytes = base64.b64decode(image_data)
    image = Image.open(BytesIO(image_bytes))
    image.save("background_removed_image.png")
    print("Background removed image retrieved and saved as background_removed_image.png.")
else:
    print("Response does not contain 'image'")

Usage of Harmonizer

from FAImageGen import ImageGen
from PIL import Image
import base64
from io import BytesIO

# Initialize the Harmonizer
image_gen = ImageGen(
    base_url='https://api.fotographer.ai/Image-gen',
    api_key='your_api_key',
    email='your_email@example.com'
)

# Convert images to base64
def image_to_base64(image_path):
    with Image.open(image_path) as img:
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')

# Prepare the image data
image_path = 'path_to_your_image.png'

# Harmonize the image
harmonized_image = image_gen.harmonizer.harmonize_image(image_path)

# Print the response keys for debugging
print("Response Keys:", response.keys())

# Print the keys at all levels of the response for debugging
for key, value in response.items():
    if isinstance(value, dict):
        print(f"Response[{key}] Keys: {value.keys()}")

# Save the harmonized image if it exists in the response
if 'image' in response:
    image_data = response['image']
    image_bytes = base64.b64decode(image_data)
    image = Image.open(BytesIO(image_bytes))
    image.save("harmonized_output_image.png")
    print("Harmonized image retrieved and saved as harmonized_output_image.png.")
else:
    print("Response does not contain 'image'")

Usage of Fuzer

from FAImageGen import ImageGen
from PIL import Image
import base64
from io import BytesIO

# Initialize the Harmonizer
image_gen = ImageGen(
    base_url='https://api.fotographer.ai/Image-gen',
    api_key='your_api_key',
    email='your_email@example.com'
)

# Convert images to base64
def image_to_base64(image_path):
    with Image.open(image_path) as img:
        buffered = BytesIO()
        img.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode('utf-8')

# Prepare the image data
image_path = 'path_to_your_image.png'
prompt = 'A Perfume Bottle placed on a table, surrounded by jewelry, elegant, with diamonds, pearls, and gold'
refprompt = '((multi-color glass perfume bottle)) vibrant, studio light, spotlight, sunset, elegant, shiny'
mode = 'full'
intensity = 3.5
width = 1000
height = 1000
isbgremove = True
resize = True
preprocess = False
preprocess_val = 0.50
postprocess = True
postprocess_val = 3
colorfix = True
colorfix_mode = 'partial'
colorfix_val = 1.0

# Fuse the image using the updated Fuzer class
fuzed_image = image_gen.fuzer.fuzer(image_path, prompt, refprompt, mode, intensity, width, height, isbgremove, resize, preprocess, preprocess_val, postprocess, postprocess_val, colorfix, colorfix_mode, colorfix_val)

# Save the fuzed image if it exists in the response
if fuzed_image:
    print("Fuzed image processing successful.")
else:
    print("Fuzing failed or image not found in the response.")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fai-gensdk-0.1.6.tar.gz (6.3 kB view hashes)

Uploaded Source

Built Distribution

fai_gensdk-0.1.6-py3-none-any.whl (9.2 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page