Python SDK combining FAI API modules
Project description
Fotographer.ai sdk modules
Installation
Install the SDK using pip:
pip install fai-gensdk
Usage of InstantLight
Here’s an example of how to use the InstantLight SDK to make an API call and handle the response:
from InstantLight import InstantLightSDK
from PIL import Image
import base64
from io import BytesIO
# Initialize the SDK
sdk = InstantLightSDK(
base_url='https://api.fotographer.ai/instantLight',
api_key='your_api_key',
email='your_email@example.com'
)
# Convert images to base64
def image_to_base64(image_path):
with Image.open(image_path) as img:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
# Prepare the image data
foreground_image64 = image_to_base64('path_to_foreground_image.png')
background_image64 = image_to_base64('path_to_background_image.png')
# Example mode 0: Edit Light With a Prompt
# Mode 0 is used to edit the light in an image using a prompt.
image_data_mode_0 = {
"foreground_image64": foreground_image64,
"background_image64": background_image64,
"prompt": "",
"mode": 0,
"prompt_strength": 3.0,
"inf_factor": 1.00,
"mask_strength": 0.5,
"image_width": 1400,
"image_height": 1400,
"additional_prompt": "",
"negative_prompt": "",
"lights": [] # leave as blank here for
}
# Example mode 1: Edit Light With a Prompt
# Mode 1 is used to edit the light in an image using a prompt.
image_data_mode_1 = {
"foreground_image64": foreground_image64,
"background_image64": background_image64,
"prompt": "neon light",
"mode": 0,
"prompt_strength": 3.0,
"inf_factor": 1.00,
"mask_strength": 0.5,
"image_width": 1400,
"image_height": 1400,
"additional_prompt": "",
"negative_prompt": "",
"lights": [] # Specify the lighting parameters as needed
#for example:
#"lights": [{"light_position": [0.5, 0.5],"light_intensity": 0.8,"light_z": 0.3,"color": [255, 200, 150],"presets": "Light1"},{"light_position": [0.2, 0.8],"light_intensity": 0.5,"light_z": 0.1,"color": [100, 100,255],"presets": "Light2"}]
}
# Example mode 2: Edit Light and Change Background
# Mode 2 is used to edit the light and change the background of an image.
image_data_mode_2 = {
"foreground_image64": foreground_image64,
"background_image64": background_image64,
"prompt": "sunset background",
"mode": 2,
"prompt_strength": 3.0,
"inf_factor": 1.00,
"mask_strength": 0.5,
"image_width": 1400,
"image_height": 1400,
"additional_prompt": "",
"negative_prompt": "",
"lights": [] # Specify the lighting parameters as needed
#for example:
#"lights": [{"light_position": [0.5, 0.5],"light_intensity": 0.8,"light_z": 0.3,"color": [255, 200, 150],"presets": "Light1"},{"light_position": [0.2, 0.8],"light_intensity": 0.5,"light_z": 0.1,"color": [100, 100,255],"presets": "Light2"}]
}
# Select the desired mode for the example
image_data = image_data_mode_2
# Make the API call
response = sdk.image_generation.get_image_gen(image_data)
# Print the response keys for debugging
print("Response Keys:", response.keys())
# Print the keys at all levels of the response for debugging
for key, value in response.items():
if isinstance(value, dict):
print(f"Response[{key}] Keys: {value.keys()}")
# Save the image and mask image if they exist in the response
if 'image' in response:
image_data = response['image']
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
image.save("output_image.png")
print("Image retrieved and saved as output_image.png.")
if 'mask_image' in response:
mask_data = response['mask_image']
mask_bytes = base64.b64decode(mask_data)
mask_image = Image.open(BytesIO(mask_bytes))
mask_image.save("output_mask_image.png")
print("Mask retrieved and saved as output_mask_image.png.")
else:
print("Response does not contain 'image'")
Make sure to update your_api_key
and your_email@example.com
with the actual values in the example usage section.
Usage of ImageGen
from FAImageGen import ImageGen as FAImageGenSDK
from PIL import Image
import base64
from io import BytesIO
# Initialize the SDK API
api = FAImageGenSDK(
base_url='https://api.fotographer.ai/Image-gen',
api_key='your_api_key',
email='your_email@example.com'
)
# Convert images to base64
def image_to_base64(image_path):
with Image.open(image_path) as img:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
# Prepare the image data
image_path = 'path_to_your_image.png'
prompt = 'a black perfume bottle on top of mounntain in front of the sea'
# Make the API call
response = api.image_generation.get_image_gen(image_path, prompt)
try:
# Make the API call
response = api.image_generation.get_image_gen(image_path, prompt)
# Print the response keys for debugging
#logging.debug("Response Keys: %s", response.keys())
# Print the keys at all levels of the response for debugging
for key, value in response.items():
if isinstance(value, dict):
logging.debug(f"Response[{key}] Keys: %s", value.keys())
# Save the image and mask image if they exist in the response
if 'image' in response:
logging.debug("Success")
else:
logging.debug("Response does not contain 'image'")
except requests.exceptions.RequestException as e:
logging.error(f"HTTP error occurred: {e}")
if hasattr(e, 'response') and e.response is not None:
logging.error(f"Response content: {e.response.content}")
except Exception as e:
logging.error("An unexpected error occurred: %s", e)
Usage of Background Removal
from FAImageGen import ImageGen
from PIL import Image
import base64
from io import BytesIO
# Initialize the SDK API
api = ImageGen(
base_url='https://api.fotographer.ai/Image-gen',
api_key='your_api_key',
email='your_email@example.com'
)
# Image path for the background removal
image_path = 'path_to_your_image.png'
# Remove the background
bg_removed_image = api.image_generation.remove_background(image_path)
# Save the background-removed image if it exists in the response
if 'image' in bg_removed_image:
image_data = bg_removed_image['image']
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
image.save("background_removed_image.png")
print("Background removed image retrieved and saved as background_removed_image.png.")
else:
print("Response does not contain 'image'")
Usage of Harmonizer
from FAImageGen import ImageGen
from PIL import Image
import base64
from io import BytesIO
# Initialize the Harmonizer
image_gen = ImageGen(
base_url='https://api.fotographer.ai/Image-gen',
api_key='your_api_key',
email='your_email@example.com'
)
# Convert images to base64
def image_to_base64(image_path):
with Image.open(image_path) as img:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
# Prepare the image data
image_path = 'path_to_your_image.png'
# Harmonize the image
harmonized_image = image_gen.harmonizer.harmonize_image(image_path)
# Print the response keys for debugging
print("Response Keys:", response.keys())
# Print the keys at all levels of the response for debugging
for key, value in response.items():
if isinstance(value, dict):
print(f"Response[{key}] Keys: {value.keys()}")
# Save the harmonized image if it exists in the response
if 'image' in response:
image_data = response['image']
image_bytes = base64.b64decode(image_data)
image = Image.open(BytesIO(image_bytes))
image.save("harmonized_output_image.png")
print("Harmonized image retrieved and saved as harmonized_output_image.png.")
else:
print("Response does not contain 'image'")
Usage of Fuzer
from FAImageGen import ImageGen
from PIL import Image
import base64
from io import BytesIO
# Initialize the Harmonizer
image_gen = ImageGen(
base_url='https://api.fotographer.ai/Image-gen',
api_key='your_api_key',
email='your_email@example.com'
)
# Convert images to base64
def image_to_base64(image_path):
with Image.open(image_path) as img:
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode('utf-8')
# Prepare the image data
image_path = 'path_to_your_image.png'
prompt = 'A Perfume Bottle placed on a table, surrounded by jewelry, elegant, with diamonds, pearls, and gold'
refprompt = '((multi-color glass perfume bottle)) vibrant, studio light, spotlight, sunset, elegant, shiny'
mode = 'full'
intensity = 3.5
width = 1000
height = 1000
isbgremove = True
resize = True
preprocess = False
preprocess_val = 0.50
postprocess = True
postprocess_val = 3
colorfix = True
colorfix_mode = 'partial'
colorfix_val = 1.0
# Fuse the image using the updated Fuzer class
fuzed_image = image_gen.fuzer.fuzer(image_path, prompt, refprompt, mode, intensity, width, height, isbgremove, resize, preprocess, preprocess_val, postprocess, postprocess_val, colorfix, colorfix_mode, colorfix_val)
# Save the fuzed image if it exists in the response
if fuzed_image:
print("Fuzed image processing successful.")
else:
print("Fuzing failed or image not found in the response.")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fai-gensdk-0.1.6.tar.gz
(6.3 kB
view hashes)
Built Distribution
Close
Hashes for fai_gensdk-0.1.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a466f588f792da6a6be934fe4f9c9781b6a50b108a306121dd1768511dacdb79 |
|
MD5 | cd3d9f006d58e136f5b3b6960e45fc93 |
|
BLAKE2b-256 | ee57e7aafbbc03677a45a24fa3f78cdfabd52fb7bc85c90b8210a8d52a3ab39c |