Skip to main content

A fair loss function

Project description

A fair PyTorch loss function

REUSE status PyPI version

The goal of this loss function is to take fairness into account during the training of a PyTorch model. It works by adding a fairness measure to a regular loss value, following this equation:


pip install fair-loss


import torch
from fair_loss import FairLoss

model = torch.nn.Sequential(torch.nn.Linear(5, 1), torch.nn.ReLU())
data = torch.randint(0, 5, (100, 5), dtype=torch.float, requires_grad=True)
y_true = torch.randint(0, 5, (100, 1), dtype=torch.float)
y_pred = model(data)
# Let's say the sensitive attribute is in the second dimension
dim = 1
criterion = FairLoss(torch.nn.MSELoss(), data[:, dim].detach().unique(), accuracy)
loss = criterion(data[:, dim], y_pred, y_true)


See the documentation.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fair_loss-0.5.tar.gz (29.8 kB view hashes)

Uploaded Source

Built Distribution

fair_loss-0.5-py3-none-any.whl (16.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page