Skip to main content

Finite-amplitude Impulse Response (FaIR) simple climate model

Project description

image image Documentation Status image image image Anaconda-Server Badge

FaIR

FaIR (the Finite-amplitude Impulse-Response) climate model is a simple climate model, or emulator, useful for producing global mean temperature projections from a wide range of emissions or prescribed forcing scenarios.

Requirements

  • python 3.8, 3.9, 3.10 or 3.11

Installation

From the Python Package Index

pip install fair

From anaconda

conda install -c chrisroadmap fair

From source

Refer to the documentation

Usage

FaIR can be driven by emissions of greenhouse gases (GHGs) and short-lived forcers (SLCFs), concentrations of GHGs, or effective radiative forcing (ERF), with different input methods for different species possible in the same run. If run concentration-driven, emissions are back-calculated. Custom GHGs and SLCFs can be defined, and all components are optional allowing experiments such as pulse-response analyses to single forcers or gathering up non-CO2 species as an aggregate forcing.

Examples

The examples directory contains Jupyter notebooks with some simple examples showing how to run FaIR and the standalone energy balance model.

If you want to try this out online, go here.

Important: A note about calibrating and constraining

FaIR is naive. It will run whatever climate scenario and climate configuration you give it. If you violate the laws of physics, FaIR won't stop you. For simple climate models as for complex, garbage in leads to garbage out. More subtle to spot are those analyses with simple climate models where the present day warming (or historical) is wrong or the climate is warming too slowly or too quickly. At least, plot a historical temperature reconstruction over your results and see if it looks right.

We have produced IPCC AR6 Working Group 1 consistent probabilistic ensembles to run with. The calibration data can be obtained here. These parameter sets are calibrated to CMIP6 models, run in a large Monte Carlo ensemble, and constrained based on observed and assessed climate metrics. For an example of how to use this calibration data set with SSP emissions, see this example. If you're writing a paper using FaIR, you should use these. There'll be a paper on this at some point, for now please cite the Zenodo DOI.

Citation

If you use FaIR in your work, please cite the following references depending on the version:

  • v2.0+: Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., and Allen, M. R.: FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration, Geosci. Model Dev., 14, 3007--3036, https://doi.org/10.5194/gmd-14-3007-2021, 2021
  • v1.1-v1.6: Smith, C. J., Forster, P. M., Allen, M., Leach, N., Millar, R. J., Passerello, G. A., and Regayre, L. A.: FAIR v1.3: A simple emissions-based impulse response and carbon cycle model, Geosci. Model Dev., https://doi.org/10.5194/gmd-11-2273-2018, 2018.
  • v1.0 (or the concept of the state-dependent impulse-response function for CO2): Millar, R. J., Nicholls, Z. R., Friedlingstein, P., and Allen, M. R.: A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions, Atmos. Chem. Phys., 17, 7213-7228, https://doi.org/10.5194/acp-17-7213-2017, 2017.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fair-2.1.3.tar.gz (61.9 kB view details)

Uploaded Source

Built Distribution

fair-2.1.3-py3-none-any.whl (48.7 kB view details)

Uploaded Python 3

File details

Details for the file fair-2.1.3.tar.gz.

File metadata

  • Download URL: fair-2.1.3.tar.gz
  • Upload date:
  • Size: 61.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for fair-2.1.3.tar.gz
Algorithm Hash digest
SHA256 16060fcd79d9abfb202054c320f3faababf4d46e633390d16c95b2a4055d7e0d
MD5 5c39388e89d8424883c1db23804f2dc6
BLAKE2b-256 7b26f5e19adb126a2989ed77a8a52e209a58f9fbe4531ce0b5e8319dd85705d7

See more details on using hashes here.

File details

Details for the file fair-2.1.3-py3-none-any.whl.

File metadata

  • Download URL: fair-2.1.3-py3-none-any.whl
  • Upload date:
  • Size: 48.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.2

File hashes

Hashes for fair-2.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1ae7699ba76874a33b11934eb4deb769112e7b7d3b02b17a7b9fbb4631c15c38
MD5 8a5849a4909645f595e745053b60054f
BLAKE2b-256 a854ef7959bdfe757dc422713bc99517957528337c49d0a980cb757afa071447

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page