Skip to main content

Unified framework for assessing and improving fairness.

Project description

fairlib

fairlib is a Python framework for assessing and improving fairness. Built-in algorithms can be applied to text inputs, structured inputs, and image inputs.

The fairlib package includes metrics for fairness evaluation, algorithms for bias mitigation, and functions for analysis.

For those who want to start with fairlib now, you can try our Colab Tutorial, which provides a gentle introduction to the concepts and capabilities. The tutorials and other notebooks offer a deeper introduction. The complete API is also available.

Installation

fairlib currently requires Python3.7+ and Pytorch 1.10 or higher. Dependencies of the core modules are listed in requirements.txt. We strongly recommend using a venv or conda environment for installation.

Standard Installation

If you do not need further modifications, you can install it with:

# Start a new virtual environment:
conda create -n fairlib python=3.7
conda activate fairlib

pip install fairlib

Development Installation

To set up a development environment, run the following commands to clone the repository and install fairlib:

git clone https://github.com/HanXudong/fairlib.git ~/fairlib
cd ~/fairlib
python setup.py develop

Benchmark Datasets

Please refer to data/README.md for a list of fairness benchmark datasets.

Usage

The full description of fairlib usages can be found in fairlib cheat sheet and API reference. Here are the most basic examples.

  • fairlib can be run from the command line:

    python fairlib --exp_id EXP_NAME
    
  • fairlib can be imported as a package

    from fairlib.base_options import options
    from src import networks
    
    config_file = 'opt.yaml'
    # Get options
    state = options.get_state(conf_file=config_file)
    
    # Init the model
    model = networks.get_main_model(state)
    
    # Training with debiasing
    model.train_self()
    

Model Selection and Fairness Evaluation

Besides the classical loss- and performance-based model selection, we provide performance-fairness trade-off based model selection (see the paper below).

Please see this tutorial for an example of loading training history, performing model selections based on different strategies, and creating basic plots. Moreover, interactive plots are also supported, which can be used for analysis.

Known issues and limitations

None are known at this time.

Getting help

If you have any problem with our code or have some suggestions, including the future feature, feel free to contact

or describe it in Issues.

Paper

fairlib: A Unified Framework for Assessing and Improving Classification Fairness

Cite Us

@article{han2022fairlib,
  title={fairlib: A Unified Framework for Assessing and Improving Classification Fairness},
  author={Han, Xudong and Shen, Aili and Li, Yitong and Frermann, Lea and Baldwin, Timothy and Cohn, Trevor},
  journal={arXiv preprint arXiv:2205.01876},
  year={2022}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

License

This project is distributed under the terms of the APACHE LICENSE, VERSION 2.0. The license applies to all files in the GitHub repository hosting this file.

Acknowledgments

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairlib-0.1.0.tar.gz (69.6 kB view details)

Uploaded Source

Built Distribution

fairlib-0.1.0-py3-none-any.whl (98.5 kB view details)

Uploaded Python 3

File details

Details for the file fairlib-0.1.0.tar.gz.

File metadata

  • Download URL: fairlib-0.1.0.tar.gz
  • Upload date:
  • Size: 69.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.12

File hashes

Hashes for fairlib-0.1.0.tar.gz
Algorithm Hash digest
SHA256 b1fb77bf985f8af57eac699d283812d06e0bc26397b8ec5ca4964f979165ae21
MD5 b837d416365549bbf8d1ce0c2f489cb5
BLAKE2b-256 fcaa0649cbde80a4a08efc87c9775797cf72f0e2434a48177fbfd879dc8e8c21

See more details on using hashes here.

File details

Details for the file fairlib-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: fairlib-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 98.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.12

File hashes

Hashes for fairlib-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2f7ee344e2a777f5533f4880c03b15a40995e7f2947cedaba69add6c7e28dd04
MD5 4b7d256931c83430170b436c6822be05
BLAKE2b-256 cbcc432571f2d5599db0e626a674753bb545d659962a3cad0ee24b77ba2e19fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page