Skip to main content

Facebook AI Research Sequence-to-Sequence Toolkit -- Now Supporting Python 3.11+

Project description



Support Ukraine MIT License Latest Release Build Status Documentation Status CicleCI Status


Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks.

We provide reference implementations of various sequence modeling papers:

List of implemented papers

What's New:

Previous updates

Features:

We also provide pre-trained models for translation and language modeling with a convenient torch.hub interface:

en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model')
en2de.translate('Hello world', beam=5)
# 'Hallo Welt'

See the PyTorch Hub tutorials for translation and RoBERTa for more examples.

Requirements and Installation

  • PyTorch version >= 1.10.0
  • Python version >= 3.8
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To install fairseq and develop locally:
git clone https://github.com/pytorch/fairseq
cd fairseq
pip install --editable ./

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./

# to install the latest stable release (0.10.x)
# pip install fairseq
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
  • For large datasets install PyArrow: pip install pyarrow
  • If you use Docker make sure to increase the shared memory size either with --ipc=host or --shm-size as command line options to nvidia-docker run .

Getting Started

The full documentation contains instructions for getting started, training new models and extending fairseq with new model types and tasks.

Pre-trained models and examples

We provide pre-trained models and pre-processed, binarized test sets for several tasks listed below, as well as example training and evaluation commands.

We also have more detailed READMEs to reproduce results from specific papers:

Join the fairseq community

License

fairseq(-py) is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ott2019fairseq,
  title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
  author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
  booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
  year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fairseq_fixed-0.12.3.1.tar.gz (10.6 MB view details)

Uploaded Source

Built Distributions

fairseq_fixed-0.12.3.1-cp312-cp312-win_amd64.whl (11.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

fairseq_fixed-0.12.3.1-cp312-cp312-manylinux_2_28_x86_64.whl (20.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

File details

Details for the file fairseq_fixed-0.12.3.1.tar.gz.

File metadata

  • Download URL: fairseq_fixed-0.12.3.1.tar.gz
  • Upload date:
  • Size: 10.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fairseq_fixed-0.12.3.1.tar.gz
Algorithm Hash digest
SHA256 c607577a54ab30e2ee0f0b0a754ea5cdbc6ad0a9f99a1726638a2201445bc1cc
MD5 73c89cf07020fcd0223237043eb2713a
BLAKE2b-256 7ee9df8fe7f34cfb7dbaacdb7a288813cad22491a32ea278820268ee34ac57ec

See more details on using hashes here.

File details

Details for the file fairseq_fixed-0.12.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for fairseq_fixed-0.12.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3490abbbdfd0693b3b35bd81ab05dfc451b1b47f4258680e343a4a3e1f4ab9d5
MD5 f39950e4536d6f0bd5db224341f748a9
BLAKE2b-256 b61c7d18588516c87437e062670f515f4f8e6904c04053c1364e8c7a9a269482

See more details on using hashes here.

File details

Details for the file fairseq_fixed-0.12.3.1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fairseq_fixed-0.12.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 38d6732118a4ff568aafa27a7667b51e4e74f23276c7da3600405532cc2d36e0
MD5 d4e1fa4995b63173c5f391710c51ee30
BLAKE2b-256 3660ac39b985e096e00c5fe7e7628d4128000be0262da047fa6f73bc3c486d1a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page