Skip to main content

A library for efficient similarity search and clustering of dense vectors.

Project description

Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any size, up to ones that possibly do not fit in RAM. It also contains supporting code for evaluation and parameter tuning. Faiss is written in C++ with complete wrappers for Python/numpy. It is developed by Facebook AI Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

faiss-cpu-1.7.1.post1.tar.gz (40.3 kB view details)

Uploaded Source

Built Distributions

faiss_cpu-1.7.1.post1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

faiss_cpu-1.7.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1.post1-cp39-cp39-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

faiss_cpu-1.7.1.post1-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

faiss_cpu-1.7.1.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1.post1-cp38-cp38-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

faiss_cpu-1.7.1.post1-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

faiss_cpu-1.7.1.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1.post1-cp37-cp37m-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

faiss_cpu-1.7.1.post1-cp36-cp36m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

faiss_cpu-1.7.1.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

faiss_cpu-1.7.1.post1-cp36-cp36m-macosx_10_14_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m macOS 10.14+ x86-64

File details

Details for the file faiss-cpu-1.7.1.post1.tar.gz.

File metadata

  • Download URL: faiss-cpu-1.7.1.post1.tar.gz
  • Upload date:
  • Size: 40.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for faiss-cpu-1.7.1.post1.tar.gz
Algorithm Hash digest
SHA256 4171a74aaaa678891a0da9f7b8545a3dea8929e9273688de384fc1938ffdc1b9
MD5 0f9e84ccc5c697e553ca03b985b4c40f
BLAKE2b-256 d2ad72e0d38fbc3c55ddf3cffd2262e4b526672a18c9778c297068c87ac744b9

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a23de30c102d0c430cf80e9566dab64f2aad18bac3063c4300dd16c9dc49a4b2
MD5 6e571bd7713c0fdd4dab2e452fdd39df
BLAKE2b-256 1c67bb90857b6864dce0ddae521a891b0e25d7d955aa462514eccc4993baebfa

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7092e7aff8e6b126c2a3222da3e92050d61d4e17cba6fc4c7e45b9873a7e7f54
MD5 56a12b808057843dc7a4be7615d04347
BLAKE2b-256 faaeb75cf5fb1f3c5d43fb6cf13483892061cb17329e6976630372a3d8093e60

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5ab89f103c152db6d503327786e79f683d1470932f5190df9ca0673458928f17
MD5 f11e6201b6d6ff60a732f1d323dfde34
BLAKE2b-256 30f2609d65f9c1270d6e8207ecdd9f1e9eb82b05cf78139fd729de33d8f714a1

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 99a73a420b06424ae2788fc74661ac6a78adeee235b2cd4d33e587c3b354d192
MD5 86f3505c2549e89cdab95912c8771ab8
BLAKE2b-256 3be2a818452f6809ef9c833bb80960259008d1fcf643676ab1ab785953faea79

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b53f38a0ce448d78886c6e7cfe4e9b6812aff9083394510f7e9edc2c603e5672
MD5 cf2a06b4743676ce2933fa0ca3e1c58f
BLAKE2b-256 00cfc78e60cea1008f55e792013f3df957a2bec2f6c36c1fdc8f95015798a4bb

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 26003519852b991f43e4b94944b9abb30375ae37b8aa6aa4733476dd3c9b2238
MD5 84bf062c7d840b7001c091f16517f502
BLAKE2b-256 532e0261ec42e9da86d513f09a9d62e96266e072f5018ecf5c138929e07cc8c5

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae8fb79ef5a52011ce3082347d19ae568f309520dd6ce35bca68fb1561561851
MD5 80f73c74263fdb4d5296f29aa242f636
BLAKE2b-256 1314e82decf95422a2233bd1f1065cb687a922ce9fd08f7ef15c1d639c173525

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad86c3db418635544bbbab6827f1d21e8beaa5c40195a112ece4567a2e370869
MD5 f6ac68968bc7a9a3b0ba940531e8f034
BLAKE2b-256 4b998913e95fe7af69dae5f0f046a3abf9e73a572243c60d323b84288971b504

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.7.10

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1fe2aef2ff4c4c51e8f916f5a215845dc14b41135640e6f729c454b1026c48d0
MD5 8276ecdf4e322380345544823d61fd8f
BLAKE2b-256 c03cbfb531fade6a5f3185c486bae43b289308e79836dffc57e96a9be3233031

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.13

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f389fd784fe9da57cf268b46bb64dbe7f3e4ce6c4906de995a7ffeccdbe3ef33
MD5 0c6cbf63b5405788d8928759d44e5c72
BLAKE2b-256 4360732bf55c76aa2d546c4fde36a416e570ab37f652a3ecaf5f0e855f02d869

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbe62fbdb2f5b88c3420ae0c9ca5172814caa642795489fba6a5ffc400f3ce08
MD5 eddb5ceffcc3cffd6cb057b7a81a8967
BLAKE2b-256 55af4e6af2cdb1ec6a253571810155c8d1f435002ae85f600bedb4e522289e4a

See more details on using hashes here.

File details

Details for the file faiss_cpu-1.7.1.post1-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: faiss_cpu-1.7.1.post1-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.6.13

File hashes

Hashes for faiss_cpu-1.7.1.post1-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 a1674d52feb86ade0d62d3ae7ed7f588e9a59747e0f1791e70bf683dace307b4
MD5 ccfb99c09a2ac38a17c9f98d738a7b61
BLAKE2b-256 3f96ba3781187e111bb9619ef71570961c8812b970c3baf2fc0dd3a0d0ade1f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page