Skip to main content

Generate fake data using joke2k's faker and your own schema

Project description

faker-schema
============

Generate fake data using `joke2k's
faker <https://github.com/joke2k/faker>`__ and your own schema.

Installation
------------

.. code:: bash

pip install faker-schema

Usage
-----

Getting started
^^^^^^^^^^^^^^^

.. code:: python


from faker_schema.faker_schema import FakerSchema

schema = {'employee_id': 'uuid4', 'employee_name': 'name', 'employee address': 'address',
'email_address': 'email'}
faker = FakerSchema()
data = faker.generate_fake(schema)
print(data)
# {'employee_id': '956f0cf3-a954-5bff-0aaf-ee0e1b7e1e1b', 'employee_name': 'Adam Wells',
# 'employee address': '189 Kyle Springs Suite 110\nNorth Robin, OR 73512',
# 'email_address': 'jmcgee@gmail.com'}

Available Schema Types
^^^^^^^^^^^^^^^^^^^^^^

This library is dependent on `faker <https://github.com/joke2k/faker>`__
for availabble schema types. Faker provides a wide variety of data types
via providers. For a list of available providers, checkout
`Providers <http://faker.readthedocs.io/en/master/providers.html>`__ and
`Community
Providers <http://faker.readthedocs.io/en/master/communityproviders.html>`__

Once you know what types you want to generate your fake data, you can
start defining your own schema

Defining your schema
^^^^^^^^^^^^^^^^^^^^

The expected schema is a dictionary, where the keys are field names and
the values are the types of the fields. The schema dictionay can have
nested dictionaries and lists too.

Loading schemas
^^^^^^^^^^^^^^^

faker-schema currently provides two ways of loading your schema:

- JSON file
- JSON string

.. code:: python

import json

from faker_schema.faker_schema import FakerSchema
from faker_schema.schema_loader import load_json_from_file, load_json_from_string

schema = load_json_from_file('path_to_json_file')
faker = FakerSchema()
data = faker.generate_fake(schema)

# OR

json_string = '{"employee_id"": "uuid4", "employee_name": "name"", "employee address":
"address", "email_address": "email"}'

schema = load_json_from_string(json_string)
faker = FakerSchema()
data = faker.generate_fake(schema)

You can define your own way of loading a schema, convert it to a Python
dictionary and pass it to the FakerSchema instance. The aim was to
de-couple schema loading/generation from fake data generation. If you
want to contribute more schema loading techniques, please open a GitHub
issue or send a pull request.

Using different locales
^^^^^^^^^^^^^^^^^^^^^^^

The `Faker <https://github.com/joke2k/faker>`__ library provides a list
of different `locales <https://github.com/joke2k/faker#localization>`__.
You can choose your required locale from that list and provid it to the
FakerSchema instance

.. code:: python

from faker_schema.faker_schema import FakerSchema

schema = {'employee_id': 'uuid4', 'employee_name': 'name', 'employee address': 'address',
'email_address': 'email'}
faker = FakerSchema(locale='it_IT')
data = faker.generate_fake(schema)
print(data)
# {'employee_id': '47f8bb04-fc05-25c9-73cc-e8a22f29ee4e', 'employee_name': 'Caio Negri',
# 'employee address': 'Stretto Davis 34\nDamico lido, 54802 Vibo Valentia (TR)',
# 'email_address': 'nunzia19@libero.it'}

More Schema Examples
^^^^^^^^^^^^^^^^^^^^

Nested Dictionary
^^^^^^^^^^^^^^^^^

.. code:: python

from faker_schema.faker_schema import FakerSchema

schema = {'EmployeeInfo': {'ID': 'uuid4', 'Name': 'name', 'Contact': {'Email': 'email',
'Phone Number': 'phone_number'}, 'Location': {'Country Code': 'country_code',
'City': 'city', 'Country': 'country', 'Postal Code': 'postalcode',
'Address': 'street_address'}}}
faker = FakerSchema()
data = faker.generate_fake(schema)
# {'EmployeeInfo': {'ID': '0751f889-0d83-d05f-4eeb-16f575c6b4a3', 'Name': 'Stacey Williams',
# 'Contact': {'Email':'jpatterson@yahoo.com', 'Phone Number': '1-077-859-6393'},
# 'Location': {'Country Code': 'IE', 'City': 'Dyermouth', 'Country':
# 'United States Minor Outlying Islands', 'Postal Code': '84239',
# 'Address': '94806 Joseph Plaza Apt. 783'}}}

Nested List
^^^^^^^^^^^

.. code:: python

from faker_schema.faker_schema import FakerSchema

schema = {'Employer': 'name', 'EmployeList': [{'Name': 'name'}, {'Name': 'name'},
{'Name': 'name'}]}
faker = FakerSchema()
data = faker.generate_fake(schema)
# {'Employer': 'Faith Knapp', 'EmployeList': [{'Name': 'Douglas Bailey'},
# {'Name': 'Karen Rivera'}, {'Name': 'Linda Vance MD'}]}

Generating a certain number of fake data from given schema
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code:: python


from faker_schema.faker_schema import FakerSchema

schema = {'employee_id': 'uuid4', 'employee_name': 'name', 'employee address': 'address',
'email_address': 'email'}
faker = FakerSchema()
data = faker.generate_fake(schema, iterations=4)
print(data)
# [{'employee_id': 'e07a7964-9636-bca6-2a58-4a69ac126dc5', 'employee_name':
# 'Charlene Blankenship', 'employee address': '0431 Edward Mountains Suite 697\nPort Douglas,
# TX 96239-7277', 'email_address': 'ashley86@yahoo.com'}, {'employee_id':
# '42b02262-3e0c-cf40-8257-4a0af122dddb', 'employee_name': 'Cheryl Stevens',
# 'employee address': '48066 Eric Lake\nPhillipshire, MO 57224', 'email_address':
# 'lisa05@nash.info'}, {'employee_id': '41efbcc4-bb32-9260-b2b3-8fac29782e01',
# 'employee_name': 'Dennis Campbell', 'employee address':
# '52418 Diana Mills Suite 590\nEast Mackenzie, HI 16222', 'email_address':
# 'jennifer39@gmail.com'}, {'employee_id': '80bf12ff-2f3a-6db6-f3a6-14cb50076a46',
# 'employee_name': 'Jimmy Avery', 'employee address':
# '6867 Eddie Forest Apt. 735\nBranditon, IL 32717', 'email_address': 'ashley64@griffin.com'}]

BYOP (Bring Your Own Provider)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If you are using a community provider or you created your own provider,
you can use those with faker-schema as well. I will use the provider,
`faker\_web <https://github.com/thiagofigueiro/faker_web>`__ as an
example.

After `installing <https://github.com/thiagofigueiro/faker_web#usage>`__
faker\_web,

.. code:: python

from faker import Faker
from faker_schema import FakerSchema
from faker_web import WebProvider

fake = Faker()
fake.add_provider(WebProvider)

faker = FakerSchema(faker=fake)
headers_schema = {'Content-Type': 'content_type', 'Server': 'server_token'}
fake_headers = faker.generate_fake(headers_schema)
print(fake_headers)
# {'Content-Type': 'application/json', 'Server': 'Apache/2.0.51 (Ubuntu)'}

Development
-----------

Running tests
~~~~~~~~~~~~~

- Using make

.. code:: bash

make test

- Using nose

.. code:: bash

nosetests

- Using nose with coverage

.. code:: bash

nosetests --with-coverage --cover-package=faker_schema --cover-erase -v --cover-html

Running flake8
~~~~~~~~~~~~~~

- Using make

.. code:: bash

make flake8

- Using flake8

.. code:: bash

flake8 --max-line-length 99 faker_schema/ tests/

Author
------

Usman Ehtesham Gul (`ueg1990 <https://github.com/ueg1990>`__) -
uehtesham90@gmail.com

Contribute
----------

If you want to add any new features, or improve existing one or if you
find bugs, please open a GitHub issue or feel free to send a pull
request. If you have any questions or need help/mentoring with
contributions, feel free to contact me via email

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

faker-schema-0.1.4.tar.gz (6.0 kB view details)

Uploaded Source

File details

Details for the file faker-schema-0.1.4.tar.gz.

File metadata

File hashes

Hashes for faker-schema-0.1.4.tar.gz
Algorithm Hash digest
SHA256 8eb3b5c26b2535d2cc905a0bdd7c9d8423efa43e1d9685643a8f2749fa7e809d
MD5 5ef1a7f49a84cfcb03a2f4a788eb68f6
BLAKE2b-256 0921d0af3cd3fa41bbf780dd75e19facedf584bbd7956d7936f10595a0b49292

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page