Skip to main content

Falcano

Project description

Falcano

A Pythonic interface for Amazon's DynamoDB that supports Python 3 and single-table design based on PynamoDB.

Installation

pip install falcano

Basic Usage

Basic usage is nearly identical to PynamoDB. Meta must inherit from Model.Meta and Type must be defined for every model.

Create a model that describes a model in your table.

from falcano.model import Model
from falcano.attributes import UnicodeAttribute

class User(Model):
    '''
    A DynamoDB User
    '''
    class Meta(Model.Meta):
        table_name = 'dynamodb-user'
        billing_mode = 'PAY_PER_REQUEST'
    email = UnicodeAttribute(null=True)
    first_name = UnicodeAttribute(range_key=True)
    last_name = UnicodeAttribute(hash_key=True)
    Type = UnicodeAttribute(default='user')

Create the table if needed:

User.create_table(billing_mode='PAY_PER_REQUEST')

Create a new user:

user = User('John', 'Denver')
user.email = 'djohn@company.org'
user.save()

Now, search your table for all users with a last name of 'Denver' and whose first name begins with 'J':

for user in User.query('Denver', User.first_name.startswith('J')):
    print(user.first_name)

Examples of ways to query your table with filter conditions:

for user in User.query('Denver', User.email.eq('djohn@company.org')):
    print(user.first_name)
for user in User.query('Denver', User.email=='djohn@company.org'):
    print(user.first_name)

Retrieve an existing user:

try:
    user = User.get('John', 'Denver')
    print(user)
except User.DoesNotExist:
    print('User does not exist')

Advanced Usage

Indexes? No problem:

from falcano.model import Model
from falcano.indexes import GlobalSecondaryIndex, AllProjection
from falcano.attributes import NumberAttribute, UnicodeAttribute

class ViewIndex(GlobalSecondaryIndex):
    class Meta:
        billing_mode = 'PAY_PER_REQUEST'
        projection = AllProjection()
    view = NumberAttribute(default=0, hash_key=True)

class TestModel(Model):
    class Meta(Model.Meta):
        table_name = 'TestModel'
    forum = UnicodeAttribute(hash_key=True)
    thread = UnicodeAttribute(range_key=True)
    view = NumberAttribute(default=0)
    Type = UnicodeAttribute(default='test')
    view_index = ViewIndex()

Now query the index for all items with 0 views:

for item in TestModel.view_index.query(0):
    print(f'Item queried from index: {item}')

It's simple!

Want to use DynamoDB local? Add a host name attribute and specify your local server.

from falcano.models import Model
from falcano.attributes import UnicodeAttribute

class User(Model):
    '''
    A DynamoDB User
    '''
    class Meta(Model.Meta):
        table_name = 'dynamodb-user'
        host = 'http://localhost:8000'
    email = UnicodeAttribute(null=True)
    first_name = UnicodeAttribute(range_key=True)
    last_name = UnicodeAttribute(hash_key=True)
    Type = UnicodeAttribute(default='user')

Single-Table Design Usage

Want to follow single-table design with an index and rename the Type attribute? No problem:

from falcano.model import Model
from falcano.indexes import GlobalSecondaryIndex, AllProjection
from falcano.attributes import NumberAttribute, UnicodeAttribute

class TypeIndex(GlobalSecondaryIndex):
    class Meta:
        index_name = 'Type'
        billing_mode = 'PAY_PER_REQUEST'
        projection = AllProjection()
    Kind = UnicodeAttribute(default=0, hash_key=True)

class BaseModel(Model):
    class Meta(Model.Meta):
        table_name = 'single_table'
        # use the Kind attribute in place of Type for deserialization
        model_type = 'Kind'
    PK = UnicodeAttribute(hash_key=True)
    SK = UnicodeAttribute(range_key=True)
    TypeIndex = TypeIndex()

class User(BaseModel):
    email = UnicodeAttribute(null=True)
    Kind = UnicodeAttribute(default='user')

class Team(BaseModel):
    owner = UnicodeAttribute(null=True)
    Kind = UnicodeAttribute(default='team')

Features

  • Python >= 3.8 support
  • Use of Table boto3 resource
    • DynamoDB API conditions objects
    • Auto-Typing
  • An ORM-like interface with query and scan filters
  • Compatible with DynamoDB Local
  • Support for Unicode, Binary, JSON, Number, Set, and UTC Datetime attributes
  • Support for Global and Local Secondary Indexes
  • Automatic pagination for bulk operations(?)
  • Complex queries
  • Multiple models per table and deserialization into objects

Features not yet implemented

  • Provides iterators for working with queries, scans, that are automatically - paginated
  • Iterators for working with Query and Scan operations
  • Supports the entire DynamoDB API
  • Full table backup/restore
  • Batch operations with automatic pagination

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

falcano-0.0.7.tar.gz (34.7 kB view details)

Uploaded Source

Built Distribution

falcano-0.0.7-py3-none-any.whl (37.3 kB view details)

Uploaded Python 3

File details

Details for the file falcano-0.0.7.tar.gz.

File metadata

  • Download URL: falcano-0.0.7.tar.gz
  • Upload date:
  • Size: 34.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.0

File hashes

Hashes for falcano-0.0.7.tar.gz
Algorithm Hash digest
SHA256 0ac55c555e75b3108a80b37b7dd2c5856313b14dc55f62dcce38ebf327b4067d
MD5 920aceaf12d18caea39ba8ea9c3bbb0f
BLAKE2b-256 b9216addb8234ba8303c069050aa2dfa3062d318a7f9c1eab33c6c4028ed4c6b

See more details on using hashes here.

File details

Details for the file falcano-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: falcano-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 37.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.0

File hashes

Hashes for falcano-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 f048465356402571ea4d4f0cac2ea68d60870d31f7916feb0d6925f1a2819342
MD5 6d0c2bb4a9e2cf1a4846505ecdf12b5b
BLAKE2b-256 f9dafee33896c5f8fa30320c3aee2daf0f1fe1ae86f15584fb2770fd59cbab2e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page