Skip to main content

No project description provided

Project description

Falibrary

GitHub Actions GitHub PyPI - Python Version

Falcon add-on for API specification and validation.

Provide OpenAPI document and validation for flask service.

Mainly built for Machine Learning Model services.

If you're using Flask, check my another Python library Flaskerk.

Features

  • Generate API document with Redoc UI or Swagger UI :yum:
  • Less boilerplate code, annotations are really easy-to-use :sparkles:
  • Validate query, JSON data, response data with pydantic :wink:
  • Better HTTP exceptions for API services (default & customized) (JSON instead of HTML) :grimacing:

Quick Start

Install with pip install falibrary (Python 3.6+)

Basic example

import falcon
from wsgiref import simple_server
from pydantic import BaseModel

from falibrary import Falibrary

api = Falibrary(
    title='Demo Service',
    version='0.1.2',
)

class Query(BaseModel):
    text: str

class Demo():
    @api.validate(query=Query)
    def on_post(self, req, resp):
        print(req.context.query)
        pass

if __name__ == '__main__':
    app = falcon.API()
    app.add_route('/api/demo', Demo())
    api.register(app)

    httpd = simple_server.make_server('localhost', 8000, app)
    httpd.serve_forever()

Changes you need to make:

  • create model with pydantic
  • decorate the route function with Falibrary.validate()
  • specify which part you need in validate
    • query (args in url)
    • data (JSON data from request)
    • resp (response) this will be transformed to JSON data after validation
    • x (HTTP Exceptions list)
  • register to Falcon application

After that, this library will help you validate the incoming request and provide API document in /apidoc.

Parameters in Falibrary.validate Corresponding parameters in falcon
query req.context.query
data req.context.data
resp \
x \

For more details, check the document.

More features

import falcon
from wsgiref import simple_server
from pydantic import BaseModel, Field
from random import random

from falibrary import Falibrary


api = Falibrary(
    title='Demo Service',
    version='0.1.2',
)


class Query(BaseModel):
    text: str = Field(
        ...,
        max_length=100,
    )


class Response(BaseModel):
    label: int = Field(
        ...,
        ge=0,
        le=9,
    )
    score: float = Field(
        ...,
        gt=0,
        lt=1,
    )


class Data(BaseModel):
    uid: str
    limit: int
    vip: bool


class Classification():
    """
    classification demo
    """
    def on_get(self, req, resp, source, target):
        """
        API summary

        description here: test information with `source` and `target`
        """
        resp.media = {'msg': f'hello from {source} to {target}'}

    @api.validate(query=Query, data=Data, resp=Response, x=[falcon.HTTP_403])
    def on_post(self, req, resp, source, target):
        """
        post demo

        demo for `query`, `data`, `resp`, `x`
        """
        print(f'{source} => {target}')
        print(req.context.query)
        print(req.context.data)
        if random() < 0.5:
            raise falcon.HTTPForbidden("Bad luck. You're fobidden.")
        return Response(label=int(10 * random()), score=random())


if __name__ == '__main__':
    app = falcon.API()
    app.add_route('/api/{source}/{target}', Classification())
    api.register(app)

    httpd = simple_server.make_server('localhost', 8000, app)
    httpd.serve_forever()

Try it with http POST ':8000/api/zh/en?text=hello' uid=0b01001001 limit=5 vip=true.

Open the docs in http://127.0.0.1:8000/apidoc .

For more examples, check examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

falibrary-0.5.2.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

falibrary-0.5.2-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file falibrary-0.5.2.tar.gz.

File metadata

  • Download URL: falibrary-0.5.2.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for falibrary-0.5.2.tar.gz
Algorithm Hash digest
SHA256 746b5ab949c8f75a452c21dfc79f50b679b013fb8c064b609237e3d0ce45d83d
MD5 fa810150222942bd5440152fe57f290e
BLAKE2b-256 15278c9312ff0428cd23cddba9c04174a3b683589c23e869f94603b7ffd945cd

See more details on using hashes here.

File details

Details for the file falibrary-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: falibrary-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 9.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for falibrary-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6ae3c6be7f57b74f14e819f4190fb3dcee0f4218f27fe94ce5f68263d20645b9
MD5 019ade5ae6d3a24fc67c54d975801f2d
BLAKE2b-256 d1d72e2156d8f0cb5b03ad2ed607ec34f533e978d2be3bbdbdd326d92514e55b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page