<<<ENTER_DESCRIPTION>>>
Project description
famudy-data
Light-weight Python access to multi-view data from NeRSemble dataset.
The main data resides on the cluster in /cluster/doriath/tkirschstein/data/famudy/full
1. Installation
pip install git+ssh://git@github.com/tobias-kirschstein/famudy-data.git
2. Setup
Create a file in your home directory:
~/.config/famudy/.env
with content:
FAMUDY_PROCESSED_CAPTURE_DATA_PATH_NEW="/cluster/doriath/tkirschstein/data/famudy/full"
Additionally, if you mounted rohan locally and want to access the data from your local machine, use another environment variable:
FAMUDY_REMOTE_PROCESSED_CAPTURE_DATA_PATH_NEW="<<<PATH_TO_LOCAL_ROHAN_MOUNT>>>/cluster/doriath/tkirschstein/data/famudy/full"
For example, using WSL2 on Wndows with rohan mounted into /mnt/rohan
, <<<PATH_TO_LOCAL_ROHAN_MOUNT>>>
would be //wsl.localhost/Ubuntu/mnt/
.
Usage
from famudy.data import FamudySequenceDataManager
participant_id = ...
sequence_name = ...
data_manager = FamudySequenceDataManager(participant_id, sequence_name, downscale_factor=2)
Images
timestep = ...
cam_id = ...
image = data_manager.load_image(timestep, cam_id)
Pointclouds, Depth maps or Normal maps
timestep = ...
cam_id = ...
depth_map = data_manager.load_depth_map(timestep, cam_id, n_cameras=16)
normal_map = data_manager.load_normal_map(timestep, cam_id, n_cameras=16)
points, colors, normals = data_manager.load_point_cloud(timestep, n_cameras=16)
# n_cameras=16 indicates that COLMAP was ran on all 16 cameras
Background masks
timestep = ...
cam_id = ...
alpha_map = data_manager.load_robust_matting_alpha_image(timestep, cam_id)
Camera extrinsics/intrinsics
Extrinsics are in OpenCV
format and world2cam
:
world_2_cam_poses = data_manager.load_calibration_result().params_result.get_poses()
intrinsics = data_manager.load_calibration_result().params_result.get_intrinsics()
Note: the intrinsics is given wrt to the full resolution recordings (2200x3208). However, in the interest of storage, images and depth maps are downscaled by a factor of 2 (yielding 1100x1604). Hence, the intrinsics most likely needs to be rescaled as well by intrinsics.rescale(0.5)
.
Segmentation masks
timestep = ...
cam_id = ...
segmentation_mask = data_manager.load_bisenet_segmentation_mask(timestep, cam_id)
Landmarks
The most reliable landmarks are those detected from the front camera (serial = 222200037
/ cam_id = 8
)
cam_id = ...
landmarks = data_manager.load_2d_landmarks(cam_id)
FLAME tracking
flame_params = data_manager.load_3DMM_tracking("FLAME2023_v2")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file famudy-data-0.0.7.tar.gz
.
File metadata
- Download URL: famudy-data-0.0.7.tar.gz
- Upload date:
- Size: 37.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ce6c9d2caa379451dc0ec3bec0cbbbf6908e39b040b754342fcd13166dc3757 |
|
MD5 | fb3e5bce08b2d59e40d80da3a593bd1e |
|
BLAKE2b-256 | 547924a66673e6a92f31e7d586b41a734a518fd3e359bd43bf6219b22be1ef27 |
File details
Details for the file famudy_data-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: famudy_data-0.0.7-py3-none-any.whl
- Upload date:
- Size: 40.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 319195d283519bc8c7cd19fca2d6dadb89271f44606fafab6773c85f6e8770c4 |
|
MD5 | bee0483428a360bcb259c4fc78ef06f5 |
|
BLAKE2b-256 | 98b4d638b1c5e73018c388ef7601e8ccd91281efe46734aae527931abcabd9c8 |