Skip to main content

Fanstore gathers local storage space in computer clusters to enable distirbuted neural networks training with larger datasets

Project description

# Overview Fanstore is a shared object store to support parallel neural network training. Fanstore provides a POSIX-compatible file system interface through fusepy, and low latency communication through mpi4py. Fanstore can use main memory, RAM disk, and local storage for transient parallel I/O at run time.

# To start ` sbatch bin/fanstore.slurm `

# To manually start fanstore ## The complete ImageNet dataset ` module load python3 mpiexec.hydra -f ../test/hostfile -ppn 1 python3 fanstore.py /tmp/amfora /tmp/data --loadscatter /work/00946/zzhang/imagenet/16-parts --loadbcast /work/00946/zzhang/imagenet/16-parts-validation & `

## A quarter of the ImageNet dataset ` mpiexec.hydra -f ../test/hostfile -ppn 1 python3 fanstore.py /tmp/amfora /tmp/data --loadscatter /work/00946/zzhang/imagen et/16-parts-test --loadbcast /work/00946/zzhang/imagenet/16-parts-validation & `

# To run a horovod application ` module load cuda/9.0 cudnn/7.0 mpiexec.hydra -f /work/00946/zzhang/maverick2/fanstore/test/hostfile -ppn 4 python3 keras_imagenet_resnet50_fanstore.py `

# Before terminating the job ` for h in `cat ../test/hostfile`; do ssh $h "rm -rf /tmp/data; mkdir /tmp/data; mkdir -p /tmp/amfora; rm /tmp/fuse-fanstore.log; fusermount -u /tmp/amfora"; done `

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fanstore-0.0.1.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

fanstore-0.0.1-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file fanstore-0.0.1.tar.gz.

File metadata

  • Download URL: fanstore-0.0.1.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for fanstore-0.0.1.tar.gz
Algorithm Hash digest
SHA256 87dd60cec655fb116b5766cbd4f857a0a4de491775cbbc4c1bff5f69d5f584c8
MD5 70c155f5896b4ca47a9d752ac0a3e7f2
BLAKE2b-256 7b68589cf28dc07533615fb08fcdba884b4425ead3b068dae2074e0a74322766

See more details on using hashes here.

File details

Details for the file fanstore-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for fanstore-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0e56d4205956ad95bca3fe4c43188e894f91eef7ef1cb9d3adb0acfff1a2a113
MD5 ecb4d45f123f140cb036ac291b828763
BLAKE2b-256 bd423d525299b7de925856c5fcee97aab6f6e5d54c448a8ea2e2d94f2fe78593

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page