Skip to main content

A Python wrapper for the FAPEC data compressor.

Project description

FaPyc

A Python wrapper for the FAPEC data compressor. (C) DAPCOM Data Services S.L. - https://www.dapcom.es

The full FAPEC compression and decompression library is included in this package, but a valid license file must be available to properly use it. Without a license, you can still use the decompressor (yet with some limitations, such as the maximum number of threads and the recovery of corrupted files). You can get free evaluation licenses at https://www.dapcom.es/get-fapec/ to test the compressor. For full licenses, please contact us at fapec@dapcom.es Once a valid license is obtained (either full or evaluation), you must define a FAPEC_HOME environment variable pointing at the path where you have stored the fapeclic.dat license file.

Usage

There are 3 main execution modes:

  • File: When invoking Fapyc or Unfapyc on a filename, it will (de)compress it directly into another file.
  • Buffer: You can load the whole file to (de)compress on e.g. a byte array, and then invoke Fapyc/Unfapyc which will leave the result in the output buffer. Obviously, you should be careful with large files, as it may use a lot of RAM!
  • File-to-buffer decompression: You can directly decompress a file (without having to load it beforehand) and leave its decompressed output in a buffer, which you can use afterwards.
  • Chunk: FAPEC internally works in 'chunks' of data, typically 1-8 MB each (and up to 384MB each), which allows to progressively (de)compress a huge file while keeping memory usage under control. For now, this feature is only available in the FAPEC CLI, in WinFAPEC and in the C API, not in Fapyc/Unfapyc yet.

Examples

Compress and decompress a file

In this example we use the kmall option of FAPEC, suitable for this kind of geomaritime data files from Kongsberg Maritime:

from fapyc import Fapyc, Unfapyc

filename = input("Path to KMALL file: ")

print("Preparing to compress %s" % (filename))
# Here we invoke FAPEC to directly run on files,
# so the memory usage will be small (just 10MB or so)
# although it won't allow us to directly access the
# (de)compressed buffers.
f = Fapyc(filename, chunksize = 2048576, blen = 512)
f.compress_kmall()

print("Preparing to decompress %s" % (filename + ".fapec"))
uf = Unfapyc(filename + ".fapec")
uf.decompress(output=filename+".dec")

Compress and decompress a buffer

In this example we use the tab option of FAPEC, which typically outperforms gzip and bzip2 on tabulated text/numerical data such as point clouds or certain scientific data files:

from fapyc import Fapyc, Unfapyc

filename = input("Path to file: ")
file = open(filename, "rb")
# Beware - Load the whole file to memory
data = file.read()
f = Fapyc(buffer = data)
# Invoke our tabulated-text compression algorithm
# indicating a comma separator
f.compress_tabtxt(sep1=',')
print("Ratio =", round(float(len(data))/len(f.outputBuffer), 4))

# Now we decompress the buffer
uf = Unfapyc(buffer = f.outputBuffer)
uf.decompress()

Decompress a file into a buffer, and do some operations on it

Here we provide a quite specific use case, based on ESA/DPAC Gaia (E)DR3 bulk catalogue (which is publicly available as FAPEC-compressed CSVs). In this example, we decompress one of the files, get its CSV-formatted contents with Pandas, apply some filtering conditions, and generate a histogram.

from fapyc import Unfapyc
from io import BytesIO
import pandas as pd
import matplotlib.pyplot as plt

filename = input("Path to CSV-FAPEC file: ")

### Option 1: open the file, load it to memory (beware!), and decompress the buffer:
#file = open(filename, "rb")
#data = file.read()
#uf = Unfapyc(buffer = data)

### Option 2: directly decompress from the file into a buffer:
uf = Unfapyc(filename = filename)

# Actual decompressor invocation - same for both options
uf.decompress()

# Regenerate the CSV from the bytes buffer
df = pd.read_csv(BytesIO(uf.outputBuffer), comment="#")

print("Info from the full CSV:")
print(df.info())
# Prepare some nice histograms for all data
plt.subplot(2,2,1)
plt.title("Full CSV: skymap (%d sources)" % df.shape[0])
plt.xlabel("RA")
plt.ylabel("DEC")
print("Getting 2D histogram...")
plt.hist2d(df.ra, df.dec, bins=(100, 100), cmap=plt.cm.jet)
plt.colorbar()
plt.subplot(2,2,2)
plt.title("Full CSV: G dist")
plt.xlabel("G magnitude")
plt.ylabel("Counts")
plt.yscale("log")
print("Getting histogram...")
plt.hist(df.phot_g_mean_mag, bins=(50))

# Now let's repeat, but doing the histogram from only the values that fulfil
# some conditions on some of the CSV fields
print("Loading+filtering CSV...")
iter_csv = pd.read_csv(BytesIO(uf.outputBuffer), comment="#", iterator=True, chunksize=1000)
df = pd.concat((x.query("ra_error < 0.1 & dec_error < 0.1 & ruwe > 0 & ruwe < 5") for x in iter_csv))
print("Info from the filtered CSV:")
print(df.info())
plt.subplot(2,2,3)
plt.title("Filtered CSV: skymap (%d sources)" % df.shape[0])
plt.xlabel("RA")
plt.ylabel("DEC")
print("Getting 2D histogram...")
plt.hist2d(df.ra, df.dec, bins=(100, 100), cmap=plt.cm.jet)
plt.colorbar()
plt.subplot(2,2,4)
plt.title("Filtered CSV: G dist")
plt.xlabel("G magnitude")
plt.ylabel("Counts")
plt.yscale("log")
print("Getting histogram...")
plt.hist(df.phot_g_mean_mag, bins=(50))

print("Plotting!")
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fapyc-0.3.3-cp312-cp312-win_amd64.whl (794.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

fapyc-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp312-cp312-macosx_13_0_arm64.whl (473.7 kB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

fapyc-0.3.3-cp312-cp312-macosx_10_15_x86_64.whl (482.2 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

fapyc-0.3.3-cp311-cp311-win_amd64.whl (794.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

fapyc-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp311-cp311-macosx_13_0_arm64.whl (473.1 kB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

fapyc-0.3.3-cp311-cp311-macosx_10_15_x86_64.whl (481.9 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

fapyc-0.3.3-cp310-cp310-win_amd64.whl (794.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

fapyc-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp310-cp310-macosx_13_0_arm64.whl (472.5 kB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

fapyc-0.3.3-cp310-cp310-macosx_10_15_x86_64.whl (481.0 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

fapyc-0.3.3-cp39-cp39-win_amd64.whl (801.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

fapyc-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp39-cp39-macosx_13_0_arm64.whl (473.1 kB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

fapyc-0.3.3-cp39-cp39-macosx_10_15_x86_64.whl (481.7 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

fapyc-0.3.3-cp38-cp38-win_amd64.whl (801.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

fapyc-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp38-cp38-macosx_13_0_arm64.whl (473.5 kB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

fapyc-0.3.3-cp38-cp38-macosx_10_15_x86_64.whl (481.9 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

fapyc-0.3.3-cp37-cp37m-win_amd64.whl (801.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

fapyc-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp37-cp37m-macosx_13_0_arm64.whl (472.8 kB view details)

Uploaded CPython 3.7m macOS 13.0+ ARM64

fapyc-0.3.3-cp37-cp37m-macosx_10_15_x86_64.whl (481.1 kB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

fapyc-0.3.3-cp36-cp36m-win_amd64.whl (805.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

fapyc-0.3.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

fapyc-0.3.3-cp36-cp36m-macosx_13_0_arm64.whl (469.5 kB view details)

Uploaded CPython 3.6m macOS 13.0+ ARM64

fapyc-0.3.3-cp36-cp36m-macosx_10_15_x86_64.whl (477.9 kB view details)

Uploaded CPython 3.6m macOS 10.15+ x86-64

File details

Details for the file fapyc-0.3.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 794.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e0095f16080e0bebabc86965136e8269803b9a7440aabe566f6e1fe9eb99a92c
MD5 f042595da7cd20049d62a0024086d07d
BLAKE2b-256 9e630fad3735333b90ef57bcc9ae3802ada810d790c02b87f04c8fd1aa2a211a

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b4d5bc481236fd1638c494d5c5ee4935884e7d653e2f772e4e572ecb266efd7
MD5 ea626d133234efb363adeae7eb87b8e5
BLAKE2b-256 0504e4504b954ee70409e1cc8c7c3430540f9119c53553116a635504394b99b2

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 09cdf831590a3808e5010ce54b4a9875175063cc6772abe3b0f03f3f822c74d6
MD5 c314e63be165435e854d5aea837f2506
BLAKE2b-256 84a6c3a8628e3ea29337d86260305bf9c08e9ca29f94be40206882b00a628067

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7b374771f3a654cc675d02323c5c9a4dd4578f755d85ba81f3aa0580f982f3d6
MD5 cfa6acd4fc9f9760c739ef226363fccc
BLAKE2b-256 f1f2cc873040080e4f124c213898a2ea1f93c6accbdf334786b13c632c91f988

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 794.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 868d9de84a79ac6fe6644900a2f1590a4dc29ccc757dd420ed1ac5d534b2d1b3
MD5 399122795f72afad6c9c3c9d3cbc0022
BLAKE2b-256 6c10c78efef937d7857640c0f13212d3c3654468d3618e99746cf6bf22a97fae

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff4fb128f7c430d1602c0b510d3e4ba6f8d3f060bb2be3e9f4ad989bc5346883
MD5 2f5126901b661f19684179ae60d3f804
BLAKE2b-256 9bfe3cc2498858fb14d914219de2c0475bfebeedf8dbb44b9905a0a0f28fbe13

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 a2adf9024911e35ef39b0539cbd9311a5762a53220c5bef404f12f666f578b98
MD5 e03974e4532a9fea3a51d3d565467ab9
BLAKE2b-256 a3322d4c311d0fdcc192d6a4dc2ad79969ca4401c499c16c45f82938735782ba

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 be5d5159a3015625f588458fe95c7eb0077fd8341331aaf03ac45a22bbd006c3
MD5 9d69785aa9730fc56dcdf9f2879d01f5
BLAKE2b-256 1f74704e0fb0f537bd6eb925e1f9bbe4f8f212fb6c35dc09975ae54279694517

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 794.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 caa43e99a7083ef51046671bb39d86889c2be0febe391f7e66d7fd645be817d3
MD5 fc70de5087022006175a38b2af64065e
BLAKE2b-256 cdd808bbf3e8cd4af39c7c9ed3f7c7b274e470d097e3c7e2ab02e34c4036f939

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54d30742c948c85072a80ba920d368d9ecd0d423559a6b6f5fa27a10cf4814b6
MD5 64c5baa6bdea6b0dd05c9ba594073132
BLAKE2b-256 6a814723e811cff41a47ed3ebf4eb37c56575f458406671bc929b1a5420e4316

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 05a7038e79f1fac85df20cc4404c2d9d223fb020f1a576ee376bfe31551f272a
MD5 8784283255061aeb66378363c37acfb0
BLAKE2b-256 89ab0edd34879b1a720aca3a724a3d1d4471e81013a7642b6425e1b83bea8fda

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6e0eb286feaf19595192dd0dd01724e9b141ca71578407b59451f873d3916b41
MD5 10407ad3db292837af8c45dfb3b669cc
BLAKE2b-256 9453bf8bc1c8b2db058193c309eae6c74ec1d261ef60c3acd0467b4aec4496b0

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 801.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 bd0420d3bc95e208d555f0c6d7eeeb0d6383d8e16984351c5f0fd5300a90d938
MD5 57cf18098b3f3329502f6c75efb4a822
BLAKE2b-256 364bc62fb3460443ba543389971f85d31b2ea0f928fcf752ced531476915523b

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 442c15bbb270c82828afc9d63d83cf04ace2b73db9c55474a4cc802909d2daf6
MD5 5179c7602391b629f8b79b12d3817ba0
BLAKE2b-256 dca8070b98612f3ccb2c50e2daad718f6c32cbce0b04ac2bf46ca4295523a010

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 1e064d316f1ae4702a2089855bcf7bb766c6aa5ac51e467ff14d8075076bd526
MD5 d1215977b061d07711a3d9314dc7cbd6
BLAKE2b-256 e8a8d32a63109defd13de57758515a32cbe60804589d0b68831514d769a2145a

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 82af3a809e962bb5549f2048303de6ecb8802b61e3766dd1c3c7d993ca652bff
MD5 fcdd7a99d797ac64acac49ef49be89b4
BLAKE2b-256 019869a433357bff22f850e0bc66d10a1fce11af4df3698343a06af1e7474572

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 801.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c5f6527744eb3d92b0505f09209a3c293fb7b8595ffe85a74b406098aa1f26cd
MD5 6fdf5ae72a14a2f78e6753a2a9948de0
BLAKE2b-256 6f9ab9ac28c6e8027b23cae491f2ebe84e7a5f5778d98cb4a72e21dba5ffb957

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 216613f2ebbc95fb64fd39d57edad093b4c0dce72b0e2d27d239db44fb238b7c
MD5 a000213eb5e4574e724167f42f5f9402
BLAKE2b-256 84b2ce7a865f60d1e9ba57f6e545aa7f52c1c6c8e52216d7dee42a870e5902e2

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 2d40d83178bf10092f497f5b5ce3a726210d88bd01acbfa91cffdcc4af7cb92a
MD5 da98c8b8be057a406dab3d0a5b439148
BLAKE2b-256 7bd38b2ecb6279dc6891d8068eba9f9e10242ce82aa1d887537725bc823a1991

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e6bfe1ae694ae7d85071cf0f180b2970b1053c2eaa8d5d60b5860c316d0faece
MD5 a6ec344315d31bc91fbc50ea6713cade
BLAKE2b-256 26723f52ac58bd5df24b3fc4edf78cfd18db33c093105ed79c2d79c355e828e0

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 801.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6d3e86bae09e965d0a47f63597b10cff4e8a3f04f91968d41f212dde1b03be2c
MD5 8cfd4ce9a85e30c955dfbd473504eb17
BLAKE2b-256 8af5bedadd6c4be9e6b3d54a2529bf7c9c37bce3b1516be7ac336416cae0d7c5

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67cb0decd93992c6f553f12416e31dda737db9d121f2d5979b3289551644307b
MD5 2d684890c106757a6cc23f4ca3cebf6b
BLAKE2b-256 f7d873a145a30a680d9de86efbfad13f97aa03a553c4b775053baefb4e583168

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp37-cp37m-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp37-cp37m-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 54b75d25da525048b75dd0420c6310ada465f58b228e1a5b22e8676f98cf0519
MD5 22b6937f376594ca43e488ce7c422023
BLAKE2b-256 72e0b27a8343bb29ee977bea86dc97c6a241915f018aedd0a0405f73c071bd83

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 28dda2e8458dd1dcb65b3ac770f41d1fbb04ded0931d22281e1a70c36174e664
MD5 ccd273a57d4332ab87cccfed9193ccab
BLAKE2b-256 bd0a0942801e133b74d6f37b4d2c1baf4568e172464c0c0b95a659bcd8d03700

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: fapyc-0.3.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 805.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for fapyc-0.3.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ab1b624e24b88668d62c77f3cb63056b69b854e84823bbf961eaf60dfbe6c997
MD5 6ae46894cc7d218cdf48d770e6460f77
BLAKE2b-256 4b40eafa757a4ea1027933db23568f00fbbf44af284fc13fe8a99969db9fdd94

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ab8d7846aa13ab4780024e1fe272b6acfc2e4bf2f6c26d0f5484a10cdb6bf43
MD5 d8fb1552efaa0c74aee3e2cfe75e853e
BLAKE2b-256 2df33d8ed8fff7d5e2ea343da24713d6328672bb120cdb33559471c95ae174d9

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp36-cp36m-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp36-cp36m-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 506dd507af27a4ca673dbc7ea554da431a9a15bdc6072832b8908f14a84234b1
MD5 0494bd2cdd956dc1e86a59c293d4a462
BLAKE2b-256 641144dcf0dfdd7fc72af28ed7573ada69d27371a578cb7fe44ccdc37b834c59

See more details on using hashes here.

File details

Details for the file fapyc-0.3.3-cp36-cp36m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fapyc-0.3.3-cp36-cp36m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a2a6fca21b3b8c993ec77701d23e659a5ec099673755c736be274c0431740e6b
MD5 240e27a66868433cc54f74f1861de116
BLAKE2b-256 fa3522e2acac15a4a42deda9d0f5a44bd2d46434a18ebefdf45bdd2a1aea0be2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page