Skip to main content

A Transformer-based SocialNLP toolkit for Farcaster

Project description

FarGlot

A Transformer-based SocialNLP toolkit for Farcaster.

Installation

pip install farglot

Examples

from farglot import CastAnalyzer

sentiment_analyzer=CastAnalyzer.sequence_analzyer_from_model_name(
    hub_address="nemes.farcaster.xyz:2283",
    model_name="pysentimiento/robertuito-sentiment-analysis"
)

sentiment_analyzer.predict_cast(fid=2, hash_hex="0bcdcbf006ec22b79f37f2cf2a09c33413883937")
# {'NEG': 0.051998768001794815, 'NEU': 0.22470703721046448, 'POS': 0.7232941389083862}
sentiment_analyzer.predict_casts_by_fid(fid=2)
# {'NEG': 0.03734538331627846, 'NEU': 0.505352795124054, 'POS': 0.4573018550872803}

Generate a Training Corpus from a Hub

Install the FarGlot CLI

pip install "farglot[cli]"

Define Training Set Classifier(s)

{
  "name": "labels",
  "default_value": 1 // optional
}

For multi-label classfication:

[
  {
    "name": "class_one",
    "default_value": 1 // optional
  },
  {
    "name": "class_two",
    "default_value": 2 // optional
  },
  {
    "name": "class_three",
    "default_value": 3 // optional
  }
]

Usage

farglot init
farglot set-classifers-path /path/to/class_configs.json
farglot set-hub-db-path /path/to/.rocks/rocks.hub._default
farglot new-training-set --out ./data/training-set.csv

Tuning

TODO: Example of fine-tuning and uploading dataset and model to Hugging Face

Tuning Resources

Not sure how to where to start? Check out the following blog posts on tuning an LLM:

This largely is largely adapted off of pysentimiento.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

farglot-0.1.3.tar.gz (32.3 kB view details)

Uploaded Source

Built Distribution

farglot-0.1.3-py3-none-any.whl (50.3 kB view details)

Uploaded Python 3

File details

Details for the file farglot-0.1.3.tar.gz.

File metadata

  • Download URL: farglot-0.1.3.tar.gz
  • Upload date:
  • Size: 32.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.15 CPython/3.8.12 Darwin/22.5.0

File hashes

Hashes for farglot-0.1.3.tar.gz
Algorithm Hash digest
SHA256 dcde866bd3bee4f72933dfa9a95f8293f118a8e94e1c4a84e554a5c24e96976e
MD5 f914ac3030051f82659b03a1e64c3dc1
BLAKE2b-256 39cb0a678ac4f895cd79937082e2c3055ffee44c49564dfeb3316c9e0c06f68e

See more details on using hashes here.

File details

Details for the file farglot-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: farglot-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 50.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.15 CPython/3.8.12 Darwin/22.5.0

File hashes

Hashes for farglot-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 43b78b6f8e395451fe4ccdd7e64d6ead3f53a75a53545e0c17892479071a95b8
MD5 74a3acbdb0f0daeadc29da9490414915
BLAKE2b-256 07b310869a59a5a88097bd5aa60275a18b85968a80cd3ae5e790f15e7d3893c2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page