Skip to main content

No project description provided

Project description

PyPI version No dependencies Code style: black

^fassert$: Fuzzy assert

Fuzzy assert in your tests only a subset of data that matters

from fassert import fassert

# Usage: fassert(<data>, <template>)

fassert("This is expected", "This is expected")

fassert("This matches as well", re.compile(r"[thismachewl ]+", re.I))

fassert(
    {"key": "value", "key2": "value2"},
    {"key": "value"}
) # key2: value2 is ignored as it's not defined in the template

fassert(
    {"key": "value", "abc": "value"},
    # You can nest and combine the fuzzy matching types in containers
    {re.compile(r"[a-z]{3}"): "value"}
)

fassert(
    [1, {"very": {"nested": {"dictionary": "data"}}}, {"not": "this"}],
    # Isn't this cool?
    [{"very": {re.compile(".{6}"): {"dictionary": lambda x: len(x) == 4}}}]
)

# Template can contain callables as well
fassert("value", lambda x: x == "value")

try:
    fassert("expected", "to not match")
    fassert({"a": "b"}, {"c": "d"})  # This will fail, {"c":"d"} is not in the target data
    fassert([1, 2, 3], [4])
    fassert("string", b"string")  # bytes != string in fassert
except AssertionError:
    pass
else:
    raise RuntimeError("All examples within the try block must raise the AssertionError")

In fassert, you can define a template to match your data against. When you use a type that is a container (e.g. list, tuple, dict, etc...), then only the data that you defined in the template will be asserted. All the addition data in the container will be ignored

Did you know this project is also dedicated to have 0 dependencies on other packages?

Installation

From PyPI: pip install fassert

Locally:

pip install . 

# Run tests with:
python -m unittest discover -s tests/

Advanced usage

fassert function is equivalent in creating a default FuzzyAssert() object and calling match on it. You can configure some behaviour of the fuzzy matcher via the object attributes like so:

from fassert import FuzzyAssert

fasserter = FuzzyAssert()
# Eval functions is turned on by default
fasserter.match("value", lambda x: x == "value")

fasserter.eval_functions = False
# This will now raise Assertion error
fasserter.match("value", lambda x: x == "value")

Bellow is an overview of the configurable options and their default values

Name Default value Description
eval_functions True Enable template matching as callable functions
regex_allowed True Enable matching regexes from template agains strings in the data
fuzzy_sequence_types False Ignore types of similar sequence types when matching the template (e.g. tuple vs list)
check_minimum_sequence_length True Check that the data has a minimum length of greater or equal to the template

You can also define custom data types such as following:

from fassert import fassert, FassertInterface, FuzzyAssert

class IsNumberEvenOrEqual(FassertInterface):
    def __init__(self, value):
        self.value = value

    def __fassert__(self, other: Any, matcher: FuzzyAssert, as_template: bool) -> Literal[True]:
        if self.value == other:
            return True
        elif isinstance(other, (int, float)) and int(other) % 2 == 0:
            return True
        
        raise AssertionError("Data does not match the template")


# In these examples the parameter `as_template` would be set to True as the data type is used as a template for matching
fassert(10, IsNumberEvenOrEqual(15))
fassert(15, IsNumberEvenOrEqual(15))
fassert(42.0, IsNumberEvenOrEqual(15))

try:
    fassert(15, IsNumberEvenOrEqual(17))
    fassert("some_string", IsNumberEvenOrEqual(15))
except AssertionError:
    pass
else:
    raise RuntimeError("All examples within the try block must raise the AssertionError")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fassert-0.3.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

fassert-0.3-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file fassert-0.3.tar.gz.

File metadata

  • Download URL: fassert-0.3.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.9

File hashes

Hashes for fassert-0.3.tar.gz
Algorithm Hash digest
SHA256 4b4fa5e1920f980a6c6708f78944b5681517fa3b14dddda781c1f472e37961af
MD5 907c4683e91ac800fa52bd230125606b
BLAKE2b-256 76149557e587d292bb3c8a058a35daa91aaa24d18ed0547c8d6f614ab9b5ffa6

See more details on using hashes here.

File details

Details for the file fassert-0.3-py3-none-any.whl.

File metadata

  • Download URL: fassert-0.3-py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.1 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.9

File hashes

Hashes for fassert-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7a77849ee148eca1b9817fc1452b657ca2749a3c44750f3c6d17476418b6b71d
MD5 c596de22cb14bd5df9e8f295cdf6ef6f
BLAKE2b-256 214acc0fe9c516051c5640a1bd31a13fee42175340a3b2168b8a792741dee795

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page