Skip to main content


Project description

:rocket: ANN :facepunch:


pip install fast-ann


from ann import ANN
import numpy as np

data = np.random.random((1000, 128)).astype('float32')

ann = ANN()
ann.train(data, index_factory='IVF4000, Flat', noramlize=True)

dis, idx =[:10])


  • faiss不同量级对应的训练时间及内存测试

  • 压缩方式测试

  • 四种组合:默认是查向量返回 distance与index

    • id => id/vector
    • vector => id/vector
    • push场景需要 docid => title_vector => docid
  • 线上服务

    • id2word
    • id2vector

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for fast-ann, version 2019.
Filename, size File type Python version Upload date Hashes
Filename, size fast_ann-2019. (4.6 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size fast-ann-2019. (3.7 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page