Skip to main content

A fast multithreaded C++ implementation of nltk BLEU.

Project description

fast-bleu Package

This is a fast multithreaded C++ implementation of NLTK BLEU; computing BLEU and SelfBLEU score for a fixed reference set. It can return (Self)BLEU for different (max) n-grams simultaneously and efficiently (e.g. BLEU-2, BLEU-3 and etc.).

Installation

PyPI latest stable release

pip install --user fast-bleu

Sample Usage

Here is an example to compute BLEU-2, BLEU-3, SelfBLEU-2 and SelfBLEU-3:

>>> from fast_bleu import BLEU, SelfBLEU
>>> ref1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
...          'ensures', 'that', 'the', 'military', 'will', 'forever',
...          'heed', 'Party', 'commands']
>>> ref2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
...          'guarantees', 'the', 'military', 'forces', 'always',
...          'being', 'under', 'the', 'command', 'of', 'the', 'Party']
>>> ref3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
...          'army', 'always', 'to', 'heed', 'the', 'directions',
...          'of', 'the', 'party']

>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
...         'ensures', 'that', 'the', 'military', 'always',
...         'obeys', 'the', 'commands', 'of', 'the', 'party']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
...         'interested', 'in', 'world', 'history']

>>> list_of_references = [ref1, ref2, ref3]
>>> hypotheses = [hyp1, hyp2]
>>> weights = {'bigram': (1/2., 1/2.), 'trigram': (1/3., 1/3., 1/3.)}

>>> bleu = BLEU(list_of_references, weights)
>>> bleu.get_score(hypotheses)
{'bigram': [0.7453559924999299, 0.0191380231127159], 'trigram': [0.6240726901657495, 0.013720869575946234]}

which means:

  • BLEU-2 for hyp1 is 0.7453559924999299

  • BLEU-2 for hyp2 is 0.0191380231127159

  • BLEU-3 for hyp1 is 0.6240726901657495

  • BLEU-3 for hyp2 is 0.013720869575946234

>>> self_bleu = SelfBLEU(list_of_references, weights)
>>> self_bleu.get_score()
{'bigram': [0.25819888974716115, 0.3615507630310936, 0.37080992435478316],
        'trigram': [0.07808966062765045, 0.20140620205719248, 0.21415334758254043]}

which means:

  • SelfBLEU-2 for ref1 is 0.25819888974716115

  • SelfBLEU-2 for ref2 is 0.3615507630310936

  • SelfBLEU-2 for ref3 is 0.37080992435478316

  • SelfBLEU-3 for ref1 is 0.07808966062765045

  • SelfBLEU-3 for ref2 is 0.20140620205719248

  • SelfBLEU-3 for ref3 is 0.21415334758254043

Caution Each token of reference set is converted to string format during computation.

For further details, refer to the documentation provided in the source codes.

Citation

Please cite our paper if it helps with your research.

@inproceedings{alihosseini-etal-2019-jointly,
    title = {Jointly Measuring Diversity and Quality in Text Generation Models},
    author = {Alihosseini, Danial  and
      Montahaei, Ehsan  and
      Soleymani Baghshah, Mahdieh},
    booktitle = {Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation},
    month = {jun},
    year = {2019},
    address = {Minneapolis, Minnesota},
    publisher = {Association for Computational Linguistics},
    url = {https://www.aclweb.org/anthology/W19-2311},
    doi = {10.18653/v1/W19-2311},
    pages = {90--98},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fast-bleu-0.0.82.tar.gz (12.2 kB view details)

Uploaded Source

File details

Details for the file fast-bleu-0.0.82.tar.gz.

File metadata

  • Download URL: fast-bleu-0.0.82.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.8.0 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for fast-bleu-0.0.82.tar.gz
Algorithm Hash digest
SHA256 21b3302cac3158d2be08d1171544152fc8318b1f5085de78c7ac7e5b14d39ef0
MD5 8641287516dc018957389f3fdaea7521
BLAKE2b-256 f03d6936793983c773edd9617fdcd95eeeae3645c2ca2be0148e96bc053d471a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page