Skip to main content

No project description provided

Project description

Fast Complementary Dynamics Code

We're currently working on a pip installation, but for now, this is how you can get started with our codebase.

Clone this repo and all its submodules:

git clone --recursive https://github.com/otmanon/fast_cd_pyb

Inside the repository above, install the dependencies:

pip install -r requirements.txt

Finally, build the library from source by running:

python setup.py install

Apps

We provide a variety of fast_cd apps shown in our paper.

Interactive Affine Handle

Run

import fast_cd_pyb as fcd
fcd.apps.interactive_cd_affine_handle()

This should run a few computations, and then finally open a window with the classic Complementary Dynamics fish. By playing with the Guizmo, you can interact with the fish. Press g to change guizmo transorm operations.

We also provide a few different meshes. The demo found in demos/affine_handle.py shows how to change some of the inputs we give to the interactive_cd_affine_handle such as changing the subspace size, reading from cache, or using different meshes.

We also provide many example meshes in the data directory. To run the demo on a .msh file of your choice, run

fcd.apps.interactive_cd_affine_handle(msh_file_path)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fast_cody-0.0.8-cp311-cp311-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

fast_cody-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fast_cody-0.0.8-cp311-cp311-macosx_11_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fast_cody-0.0.8-cp311-cp311-macosx_10_15_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

fast_cody-0.0.8-cp310-cp310-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

fast_cody-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fast_cody-0.0.8-cp310-cp310-macosx_11_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fast_cody-0.0.8-cp310-cp310-macosx_10_15_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

fast_cody-0.0.8-cp39-cp39-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

fast_cody-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fast_cody-0.0.8-cp39-cp39-macosx_11_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fast_cody-0.0.8-cp39-cp39-macosx_10_15_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

fast_cody-0.0.8-cp38-cp38-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

fast_cody-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fast_cody-0.0.8-cp38-cp38-macosx_11_0_arm64.whl (6.2 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fast_cody-0.0.8-cp38-cp38-macosx_10_15_x86_64.whl (6.5 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file fast_cody-0.0.8-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b905dd4e8a30644a90547b6828c5b5a2cfd2459ee81fa50a576210b486769eb7
MD5 a826e1badb1ae1b66db215490b192680
BLAKE2b-256 33337f00c088882600345dd937ffcd2b1593e9c33dfc4d214e45c9db20dbb9f2

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11ce4319d4a34a3d52228c87fe966c36890c66287a1b886924a9061b6f009573
MD5 3d85aea9708f5418f2e2e68071ed4013
BLAKE2b-256 30c47d0c4a7264d041fa2aef1f07dd99f8586db6e6a4567a6398431a9b023f4b

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b9ec8a0e8c01ae3a8ea7c38a867d759de24b6e41df0b2106de68892881f5f482
MD5 7daa9f54416ee13b18f0c242a99c2482
BLAKE2b-256 a9741fb1a039091632c3d75ba60d3bd7e29a2103fc6ea0dfe6b57d0ec3ecc7c3

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 62f5ba1b89f38b724a506fc9c0fe24d4ea1a49fbf4765e26395b98f014cfac9b
MD5 5543b3f9785778707dcb39a70ef66f79
BLAKE2b-256 31d6872f664e5424b6992a923303a93180580d00a6bc86e8321366cee2eda89a

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fea76830fae889ebd4eaab1b7efe3febe55d888e0e3b375636ddb39d9c21f474
MD5 b349b6c1c9028f81ef432f5cf62d7ed1
BLAKE2b-256 8a3fa3211e3c5fad8f1c17d8559d579c15c2b98176af41c1412933b0e4bf9464

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11164bddc382f19b0bafdb406af6f22215d2a54304b5f8f5e14259c7b94a5987
MD5 93c91165c6a66d499cd99d91c2784d9c
BLAKE2b-256 ff2cd18492756354b43cf51d3c601c3bea9c0f4fcbf259a36d22ca7d796ca12b

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dcd4177d9aea6521f543afa0cb347cd5c7057e4cbf8e147e0a4bf1e44cc3e8b1
MD5 4015fceb5c5c1c464cf3e22a155628ea
BLAKE2b-256 475e05d5f85322052cdb224f8ceee238c4467b3033c8b3d8b0da1d80c172c167

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 078a1fe479de165adbfb7aa15da4a541544cb6a8c994d699853355be2f9b9222
MD5 85e9ffe93747ee932f52b8ccf9e9b9ed
BLAKE2b-256 360be3c2811f52b1f78406c62dca6e8117c58f91e4e8ea5de3628629c59beed9

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fast_cody-0.0.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for fast_cody-0.0.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a2b5086c935e4c639fe3f3357015b7e521c720c6231e29589ba36d9997da40fa
MD5 ab98f147521954b917dec6e3dce756b8
BLAKE2b-256 319763d5d495bb4e51545cb0041c332e28ffa3cd710c45d9ec50e5d8ce8476d4

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a16a465f3310a550b1ec5f35325f277c05c3b9feb4d1d1cd2687c04c7ab5aaf
MD5 140c9aebca0c8fcf4e52135520193c95
BLAKE2b-256 5b06cff2bf5305c20b12c989f671f8ec783275b9d335263fde8115a9f22338d1

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c6aa6f43db7cdf10543312e23c0d442172746b882f19a6053e827e362aac6a5
MD5 26c24e63753254baf1a3a8220a667fa2
BLAKE2b-256 00796f75478a6f2d2fe58f51f359267ffa5aee1a41cc27aca191bdc330c2fa48

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4fec2ac4af5e31d9dd92480a993e75b6345b3114b901aa7201c9c3da61b63296
MD5 6645bf45aec8be0ce6902c56f9b9ab7b
BLAKE2b-256 f3c2dea02259a5bfc77544b35798ef5daa8ef1affef3a8dbfe5711cdb3bca204

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fast_cody-0.0.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for fast_cody-0.0.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7e2f7827220427efb8c3f43869fb27583635f237ed874478b3b7000e36182c13
MD5 b6abb773aa010c41c92845bce9ad286e
BLAKE2b-256 3d6f83826257315d7b76a08a0ca2c709f1dea954a92146602df5851543d2dd17

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5435e57cca63637bd1856eaadf39348510b635229430f8a2646306576a508b1c
MD5 03cacf799970f1fdadd9b1cb3443034c
BLAKE2b-256 3b3c9e3ad1593c427ebeef0efdf382d82fb62cd47c89f3ddbdc8a3a6ce574c6c

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ffb47ad3d2f6287ef9374d033fdb860f7086d7effa0d88d54e0addb32b7a96a1
MD5 14daa37edd7452066e978fec8f8553be
BLAKE2b-256 c2f7e6435acd5763d964ad6e3f33cef6eff0aade402356229a192ea145526d30

See more details on using hashes here.

File details

Details for the file fast_cody-0.0.8-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for fast_cody-0.0.8-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5f8774c70ba79c4a7be10effd6b9967aadc25b637fd5d2b6e6ca4120814de3e9
MD5 d516f1eb2fe706dcb712b79ab5c32f0c
BLAKE2b-256 f803f6dd9ee7730d14a98175ea3bc8ffb39db65ba0f965a00cdc1707b6c273c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page