Fit Fast, Explain Fast
Project description
# FastExplain > Fit Fast, Explain Fast
## Installing ` pip install fast-explain ` ## Clean Data, Fit ML Models and Explore Results all in one line. FastExplain provides an out-of-the-box tool for analysts to quickly explore data, train and interpret models, with flexibility to fine-tune if needed. - Automated cleaning and fitting of machine learning models with hyperparameter search - Aesthetic display of explanatory methods ready for reporting - Connected interface for all data, models and related explanatory methods
## Quickstart
### Automated Cleaning and Fitting ` python from FastExplain import * df = load_titanic_data() classification = model_data(df, dep_var="Survived", model="ebm") ` ### Aesthetic Display ` python feature_correlation(classification.data.df) ` <img alt=”Feature Correlation” src=”images/feature_correlation.png”>
` python plot_one_way_analysis(classification.data.df, "Age", "Survived", filter = "Sex == 1") ` <img alt=”One Way” src=”images/one_way.png”>
` python plot_ebm_explain(classification.m, classification.data.df, "Age") ` <img alt=”EBM” src=”images/ebm.png”>
` python plot_ale(classification.m, classification.data.xs, "Age", filter = "Sex == 1", dep_name = "Survived") ` <img alt=”ALE” src=”images/ALE.png”>
` python classification_1 = model_data(df, dep_var="Survived", model="rf", hypertune=True, cont_names=['Age'], cat_names = [], hypertune=True) models = [classification.m, classification_1.m] data = [classification.data.xs, classification_1.data.xs] plot_ale(models, data, 'Age', dep_name = "Survived") ` <img alt=”multi_ALE” src=”images/multi_ALE.png”>
### Connected Interface ` python classification_1.plot_one_way_analysis("Age", filter = "Sex == 1") classification_1.plot_ale("Age", filter = "Sex == 1") `
` python classification_1.shap_dependence_plot("Age", filter = "Sex == 1") ` <img alt=”SHAP” src=”images/shap.png”>
` python classification_1.error # {'auc': {'model': {'train': 0.9934332941166654, # 'val': 0.8421607378129118, # 'overall': 0.9665739941840028}}, # 'cross_entropy': {'model': {'train': 0.19279692001978943, # 'val': 0.4600233891109683, # 'overall': 0.24648214781700722}}} `
## Models Supported - Random Forest - XGBoost - Explainable Boosting Machine - ANY Model Class with fit and predict attributes
` python pip install lightgbm `
` python from lightgbm import LGBMClassifier custom_model = model_data(df, 'Survived', model=LGBMClassifier) custom_model.plot_ale("Age") custom_model.shap_dependence_plot("Age") `
## Exploratory Methods Supported: - One-way Analysis - Two-way Analysis - Feature Importance Plots - ALE Plots - Explainable Boosting Methods - SHAP Values - Partial Dependence Plots - Sensitivity Analysis
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file fast_explain-0.0.91-py2.py3-none-any.whl
.
File metadata
- Download URL: fast_explain-0.0.91-py2.py3-none-any.whl
- Upload date:
- Size: 157.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4e92217a2d723ed4ecd314886c845cde8c916baf1f1eea66f5c0f016d30140e |
|
MD5 | cce62da826bcb38f8247f1a295a4a96c |
|
BLAKE2b-256 | f1c63781889d5556c9a5b8b8213425083cc35ae305bd739e9e1a636529238640 |