Skip to main content

Fast-Layers is a python library for Keras and Tensorflow users: The fastest way to build complex deep neural network architectures with sequential models

Project description

Fast-Layers

Fast-Layers is a python library for Keras and Tensorflow users: The fastest way to build complex deep neural network architectures with sequential models

Installation: !pip install fast_layers

https://pypi.org/project/fast_layers/

Introduction

Tensorflow's sequential model is a very intuitive way to start learning about Deep Neural Networks. However it is quite hard to dive into more complex networks without learning more about Keras.

Well it won't be hard anymore with Fast-layers! Define your Sequences and start building complex layers in a sequential fashion.

I created fast-layers for beginners who wants to build more advanced networks and for experimented users who needs to quickly build and test complex module architectures.

Documentation

Please note that eager execution is not supported for the moment

class Sequence:

Arguments:
    name: str, positional arg
    inputs: str: name of input pipe/connector | list: names of input pipes/connectors, positional arg
    sequence=None: list of keras.layers objects,
    is_output_layer=False,
    trainable=True,

Attributes:
    inputs: str or list of input names.
    sequence: list of keras.layers objects,
    is_output_layer: True if this is the output Sequence of a Layer object.

Methods:
    call(x, training=False): by calling the sequence through __call__(), computes x.
    self_build(): build the layers of the sequence into this Sequence object.

class Layer:

Arguments:
    sequences: list of sequences,
    trainable=True,
    n_iteration_error=50: max number of iteration permitted in the computation loop before break

Attributes:
    names: list of sequences names
    trainable: True if the weights of this layer are trainable.
    sequences: list of sequences
    first_call=True: False means the Layer object has been called and
    n_iteration_error: max number of iteration permitted in the computation loop before break

Methods:
    init_layer(sequences): Takes a list of sequences and initialize the layer. Is called on __init__() if the layer
                           object has been instantiate with the argument sequences=*List of sequences*
    call(x, training=False): by calling the layer through __call__(), computes x.

TUTORIAL: MNIST classification using Inception modules with Fast-Layers

Try it yourself: https://www.kaggle.com/alexandremahdhaoui/fast-layers-tutorial !

original MNIST tutorial: https://www.tensorflow.org/datasets/keras_example

Szegedy et al. 2014, Going deeper with convolutions: https://arxiv.org/pdf/1409.4842.pdf!

szegedy et al 2014 Inception Module

# Imports and preprocessing
import fast_layers as fl
import tensorflow as tf
import tensorflow_datasets as tfds

from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

(ds_train, ds_test), ds_info = tfds.load(
    'mnist',
    split=['train', 'test'],
    shuffle_files=True,
    as_supervised=True,
    with_info=True,
)

def normalize_img(image, label):
  return tf.cast(image, tf.float32) / 255., label

ds_train = ds_train.map(
    normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_train = ds_train.batch(128)
ds_test = ds_test.batch(128)
N_FILTERS = 16
PADDING = 'same'

inception_module = fl.Layer()
sequences = [
    fl.Sequence('c1', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
    ]),
    fl.Sequence('c1_c3', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
        tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING)
    ]),
    fl.Sequence('c1_c5', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
        tf.keras.layers.Conv2D(N_FILTERS, (5,5), padding=PADDING)
    ]),
    fl.Sequence('maxpool3_c1', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING),
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
    ]),
    fl.Sequence('concat', ['c1','c1_c3','c1_c5','maxpool3_c1'], 
             is_output_layer=True,
             sequence=[
                 tf.keras.layers.Concatenate(axis=-1)])
]
inception_module.init_layer(sequences)
# A Layer can also be called like this:
sequences_2 = [
    fl.Sequence('c1', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
    ]),
    fl.Sequence('c1_c3', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
        tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING)
    ]),
    fl.Sequence('c1_c5', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING),
        tf.keras.layers.Conv2D(N_FILTERS, (5,5), padding=PADDING)
    ]),
    fl.Sequence('maxpool3_c1', 'input', sequence = [
        tf.keras.layers.Conv2D(N_FILTERS, (3,3), padding=PADDING),
        tf.keras.layers.Conv2D(N_FILTERS, (1,1), padding=PADDING)
    ]),
    fl.Sequence('concat', ['c1','c1_c3','c1_c5','maxpool3_c1'], 
             is_output_layer=True,
             sequence=[
                 tf.keras.layers.Concatenate(axis=-1)])
]


inception_module_2 = fl.Layer(sequence = sequences_2)
# Create and train the model
model = tf.keras.models.Sequential([
    inception_module,
    inception_module_2,
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128,activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
    optimizer=tf.keras.optimizers.Adam(0.001),
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)


history = model.fit(
    ds_train,
    epochs=6,
    validation_data=ds_test,
    verbose=2
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fast_layers-0.1.6.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

fast_layers-0.1.6-py3-none-any.whl (6.4 kB view details)

Uploaded Python 3

File details

Details for the file fast_layers-0.1.6.tar.gz.

File metadata

  • Download URL: fast_layers-0.1.6.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for fast_layers-0.1.6.tar.gz
Algorithm Hash digest
SHA256 1560fd231097006b218bf319ac585f147c83ea26e8d5bbaa116bcc6b6c640347
MD5 690416e0c1d8beb262bf994225fade85
BLAKE2b-256 596c96e40d5851f47336f32f7a38df6fd7fcdc0c99ea21ede666c1a639206f2d

See more details on using hashes here.

File details

Details for the file fast_layers-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: fast_layers-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 6.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for fast_layers-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 6964a679dd7135664b58a2165ef100840639f9133e8bc9e6aa0112d991be4f6b
MD5 00c93c9c1affa28bf078648a76332116
BLAKE2b-256 b8be43704ded2206fb7eff58cd5f3e92213436904c8a455838f52c7fe7d4ac76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page