A faster replacement of the standard logging module.
Project description
The fastlogging module is a faster replacement of the standard logging module with a mostly compatible API.
It comes with the following features:
(colored, if colorama is installed) logging to console
logging to file (maximum file size with rotating/history feature can be configured)
old log files can be compressed (the compression algorithm can be configured)
count same successive messages within a 30s time frame and log only once the message with the counted value.
log domains
log to different files
writing to log files is done in (per file) background threads, if configured
configure callback function for custom detection of same successive log messages
configure callback function for custom message formatter
configure callback function for custom log writer
The API is described here.
Installation
Simply run
python setup.py install --user
or create a wheel and install it.
python setup.py bdist_wheel
An optimized version of fastlogging will be installed if package cython is installed. If you need a pure python version of the fastlogging module then add option nocython.
Usage
from fastlogging import LogInit
logger = LogInit(pathName="/tmp/example1.log", console=True, colors=True)
logger.debug("This is a debug message.")
logger.info("This is an info message.")
logger.warning("This is a warning message.")
logger.rotate()
logger.fatal("This is a fatal message.")
logger.shutdown()
The example above writes all messages to a file and to the console. On the console the messages are printed with colors. With the rotate call the log file is renamed to example1.log.1 and a new log file is created.
The second example creates a server socket on localhost and writes all messages to a log file for 15 seconds.
import os
import time
from fastlogging import LogInit
addr = "127.0.0.1"
port = 12345
pathName = "C:/temp/server.log" if os.name == 'nt' else "/tmp/server.log"
logger = LogInit(pathName=pathName, server=(addr, port))
logger.info("Logging started.")
logger.debug("This is a debug message.")
logger.info("This is an info message.")
logger.warning("This is a warning message.")
time.sleep(15)
logger.info("Shutdown logging.")
logger.shutdown()
And now the third example connects to the log server and sends 300000 messages.
import os
import time
from fastlogging import LogInit
addr = "127.0.0.1"
port = 12345
logger = LogInit(connect=(addr, port, "HELLO%d" % os.getpid()))
for i in range(100000):
logger.debug("This is a DBG message %d." % i)
logger.info("This is an INF message %d." % i)
logger.warning("This is a WRN message %d." % i)
time.sleep(10.0)
logger.shutdown()
The messages are sent in blocks to improve speed.
Optimizing for speed
As you can see in the charts below fastlogging is much faster than the default logging module which comes with Python (red bar).
You also can see that using threads can be slower than writing logs directly to the file, because of additional overhead. So threads should only be used if you’ve got a slow disk and lot’s of messages to log.
There are 3 more bars which show even better performance. To understand the optimizations a deeper look into a logging line has to be done.
Let’s analyze what is going on when the following code line is executed:
logger.debug("This is a debug message.")
The Python interpreter first creates a tuple for the positioned arguments and a dictionary for the named arguments. Then it calls method info. In method info the log level is checked against the severity. Only if the severity is high enough the message will be logged.
Now what if we set a if before the above line?
if logger.level <= DEBUG:
logger.debug("This is a debug message.")
Running benchmarks will show us that the code runs faster now if the log level is higher than DEBUG. Normally we need debug messages only in case of development or bugfixing. So it makes sense to optimize such lines. But doing this manually is awkward and bloats the code.
To simplify this task the fastlogging module comes with an AST optimizer which does the work for you.
Benchmarks
The following benchmarks were measured on Ubuntu 18.10 with a Ryzen 7 CPU and an SSD.
You can see that fastlogging is ~5x faster when rotating is disabled and >13x faster in case of log rotating.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file fast_logging-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: fast_logging-1.0.2-py3-none-any.whl
- Upload date:
- Size: 15.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.6.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 722c9cc69441c154f54221bedc70391419077cf6cba4dedee005655de9e807f5 |
|
MD5 | 7978fce17dce4bf8ee66d4eb2702e604 |
|
BLAKE2b-256 | 39c2119b73f467e633ce86767647cc6826452ad1249a8b2f1ca18002b0b5232e |