Skip to main content

Fast and full-featured Matrix Market file I/O

Project description

PyPI version Conda Version

Fast and full-featured Matrix Market file I/O package for Python.

Fastest way to read and write any Matrix Market .mtx file into a SciPy sparse matrix, sparse coordinate (triplet) arrays, or dense ndarray.

Implemented as a Python binding of the C++ fast_matrix_market library.

pip install fast_matrix_market
conda install fast_matrix_market

Compared to scipy.io.mmread()

The fast_matrix_market.mmread() and mmwrite() methods are direct replacements for their respective SciPy versions. Compared to SciPy v1.10.0:

  • Significant performance boost

    read speedup over SciPy write speedup over SciPy

    The bytes in the plot refer to MatrixMarket file length. All cores on the system are used by default, use the parallelism argument to override. SciPy's routines are single-threaded.

  • 64-bit indices, but only if the matrix dimensions require it.

    scipy.io.mmread() crashes on large matrices (dimensions > 231) because it uses 32-bit indices on most platforms.

  • Directly write CSC/CSR matrices with no COO intermediary.

  • longdouble
    Read and write longdouble/longcomplex values for more floating-point precision on platforms that support it (e.g. 80-bit floats).

    Just pass long_type=True argument to any read method to use longdouble arrays. SciPy can write longdouble matrices but reads use double precision.

    Note: Many platforms do not offer any precision greater than double even if the longdouble type exists. On those platforms longdouble == double so check your Numpy for support. As of writing only Linux tends to have longdouble > double.

  • Vector files
    Read 1D vector files. scipy.io.mmread() throws a ValueError.

Differences

  • scipy.io.mmwrite() will search the matrix for symmetry if the symmetry argument is not specified. This is a very slow process that significantly impacts writing time for all matrices, including non-symmetric ones. It can be disabled by setting symmetry="general", but that is easily forgotten. fast_matrix_market.mmwrite() only looks for symmetries if the find_symmetry=True argument is passed.

Usage

import fast_matrix_market as fmm

Read as scipy sparse matrix

>>> a = fmm.mmread("eye3.mtx")
>>> a
<3x3 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in COOrdinate format>
>>> print(a)
(0, 0)	1.0
(1, 1)	1.0
(2, 2)	1.0

Read as raw coordinate/triplet arrays

>>> (data, (rows, cols)), shape = fmm.read_coo("eye3.mtx")
>>> rows, cols, data
(array([0, 1, 2], dtype=int32), array([0, 1, 2], dtype=int32), array([1., 1., 1.]))

Read as dense ndarray

>>> a = fmm.read_array("eye3.mtx")
>>> a
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]])

Write any of the above to a file

>>> fmm.mmwrite("matrix_out.mtx", a)

Write to streams (read from streams too)

>>> bio = io.BytesIO()
>>> fmm.mmwrite(bio, a)

Read only the header

>>> header = fmm.read_header("eye3.mtx")
header(shape=(3, 3), nnz=3, comment="3-by-3 identity matrix", object="matrix", format="coordinate", field="real", symmetry="general")

>>> header.shape
(3, 3)

>>> header.to_dict()
{'shape': (3, 3), 'nnz': 3, 'comment': '3-by-3 identity matrix', 'object': 'matrix', 'format': 'coordinate', 'field': 'real', 'symmetry': 'general'}

Note: SciPy is only a runtime dependency for the mmread and mmwrite methods. All others depend only on NumPy.

Quick way to try

Replace scipy.io.mmread with fast_matrix_market.mmread to quickly see if your scripts would benefit from a refactor:

import scipy.io
import fast_matrix_market as fmm

scipy.io.mmread = fmm.mmread
scipy.io.mmwrite = fmm.mmwrite

Dependencies

  • No dependencies to read/write MatrixMarket headers (i.e. read_header(), mminfo()).
  • numpy to read/write arrays (i.e. read_array() and read_coo()). SciPy is not required.
  • scipy to read/write scipy.sparse sparse matrices (i.e. read_scipy() and mmread()).

Neither numpy nor scipy are listed as package dependencies, and those packages are imported only by the methods that need them. This means that you may use read_coo() without having SciPy installed.

Development

This Python binding is implemented using pybind11 and built with scikit-build-core.

All code is in the python/ directory. If you make any changes simply install the package directory to build it:

pip install python/ -v

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fast-matrix-market-1.7.2.tar.gz (289.1 kB view details)

Uploaded Source

Built Distributions

fast_matrix_market-1.7.2-pp39-pypy39_pp73-win_amd64.whl (576.4 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (980.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (584.1 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.7.2-pp38-pypy38_pp73-win_amd64.whl (576.1 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (981.0 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (584.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.7.2-pp37-pypy37_pp73-win_amd64.whl (576.1 kB view details)

Uploaded PyPy Windows x86-64

fast_matrix_market-1.7.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (980.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (583.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

fast_matrix_market-1.7.2-cp311-cp311-win_amd64.whl (576.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fast_matrix_market-1.7.2-cp311-cp311-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (981.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-cp311-cp311-macosx_11_0_arm64.whl (543.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fast_matrix_market-1.7.2-cp311-cp311-macosx_10_9_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fast_matrix_market-1.7.2-cp310-cp310-win_amd64.whl (576.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

fast_matrix_market-1.7.2-cp310-cp310-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (980.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-cp310-cp310-macosx_11_0_arm64.whl (543.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fast_matrix_market-1.7.2-cp310-cp310-macosx_10_9_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fast_matrix_market-1.7.2-cp39-cp39-win_amd64.whl (571.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fast_matrix_market-1.7.2-cp39-cp39-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (980.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-cp39-cp39-macosx_11_0_arm64.whl (543.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fast_matrix_market-1.7.2-cp39-cp39-macosx_10_9_x86_64.whl (585.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fast_matrix_market-1.7.2-cp38-cp38-win_amd64.whl (576.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

fast_matrix_market-1.7.2-cp38-cp38-musllinux_1_1_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

fast_matrix_market-1.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (981.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-cp38-cp38-macosx_11_0_arm64.whl (543.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fast_matrix_market-1.7.2-cp38-cp38-macosx_10_9_x86_64.whl (584.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

fast_matrix_market-1.7.2-cp37-cp37m-win_amd64.whl (576.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

fast_matrix_market-1.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

fast_matrix_market-1.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (986.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

fast_matrix_market-1.7.2-cp37-cp37m-macosx_10_9_x86_64.whl (579.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file fast-matrix-market-1.7.2.tar.gz.

File metadata

  • Download URL: fast-matrix-market-1.7.2.tar.gz
  • Upload date:
  • Size: 289.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.4

File hashes

Hashes for fast-matrix-market-1.7.2.tar.gz
Algorithm Hash digest
SHA256 ed75ea397408c545ebdf8b57b0e67da73bdbb3e40a4b2ae9a044b8a9a6190416
MD5 8791fbb30ab17c4fa913d48064bf34ea
BLAKE2b-256 ba628f70e0a71b0c4d9be3f41419bf9648a162f6a2928569b26bd753e1a2e668

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d6d200e1ab68c01b1028c89fc9eaa31dcea9cf001a9a15a14bbe2f0b04035ec5
MD5 7977bcb6f796884731f07f944201041e
BLAKE2b-256 83f15a3ebace0b19983af0e81436140df79090b764f32b803e334746ab1c790f

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9738f2c53765b8a73fd4a668668a05e7031716fa301dfac956a6420d5343eba3
MD5 cd2bdd7cd99a91a7d8dfd2639fc98061
BLAKE2b-256 96919666fad81032ac26972d58d7b7f7825f029d95038c43131c80c19414e48b

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e442d6f1dd0e68d2607db658facb99c80cd000a7a8a5d79a530594f87bc8267c
MD5 2a034fc888d4f5b2479bf1b6b8d6e074
BLAKE2b-256 97eacaa1e22c852d1c3f4b2f2593b0e537463462ef9f9b224b6a5eff560a4ac4

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6ab2a34a01d40ae647a5650a092aec4bbb055b0fdcbd8d7513c93a140a05f589
MD5 7180f13f493059f86235eb9a607ffbde
BLAKE2b-256 a6d6e808a810cb0291409ea6869b671168e8a7c5990e4fac820e06484430af94

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1fbba4a471763bd2799482dd7cabfe5c8ca3478c51630396bdea261f54623f66
MD5 fb2a8b9b90263b86a87890f31413a261
BLAKE2b-256 d4e5c7c664c50e40c795b4f543f1e275c15955d781d041c996e1938d95687a69

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96c1142657118ac0a15e653216096f46cd79137f82b01af7d48f54bace55b7da
MD5 37b0fe2d932cf11ef4ea09282926e5e5
BLAKE2b-256 3c062d046780f4805cfb660d47303a7fab52aa6ffdf79acc393147456b3dba5a

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 42da93daf6e77356aebb3ddb5b27aa1b8d54296ccd9cb65496bc07773856ffad
MD5 0afdba881b0ca8802283f2abc2ac8c32
BLAKE2b-256 3e650e79a5a6471dc096d1d6267f37c1ed4858204ef370d8addddf1b2066e37d

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc3838dea607a3f1bf0c7de1e76d651ba5aa74e740f5471886f99f579707d0ce
MD5 3e8d3eb16ee2994b3ce3c1b5c288e24b
BLAKE2b-256 dc802be1983b9f5c3bf67e45e2279a6b1b66ba063cae0e8d960d1b5a805355b5

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87c17e5810f9c12283e7e41fc5d3dc054e5bbb82ec7c1ba4134819d20956a239
MD5 a16f655402fa4716a6a6238a7e7f680d
BLAKE2b-256 ce6b7d881685e22c128eb1864f530725fb5799c070696541b4788e05ff21fd5c

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bda887a5637d56a6fff1e36f9078e155906a411662e7a34d933fda2100affe8d
MD5 92c2e811833a485f1e9cb8026aaaf0dc
BLAKE2b-256 b484da8ee96844546e5cd2e109a46eccecd566a8d62c984f47ca3276dc5733a9

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6fd1c046df5d069cf27da679124be3b5b0c666aa0e29705264c1160761520a6c
MD5 39024e5ae104daa19c55e144f5dfe63f
BLAKE2b-256 8cc39ce232999c77fb6ba9c4cc956f80f0243d06329d4c2322d70bc8fee31845

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b25d0a71296f23ae7d6ec27d8a7e50ac1b0773cbc7aa15fc61832f27d2fd3e4f
MD5 a55bd1192cbe084b1eae2b105d5e93ee
BLAKE2b-256 2067f48952d6fee56448969a65ca7c18ec71c54a054d7289eb30a912bca8e7fb

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a68fa1c75dd82594bb0fa924f1df9460f5fb2bd17e687c8e73ccefbd6f0e1b54
MD5 7632281c9df1cfea1e5f935a8dca7ec8
BLAKE2b-256 8b205d9875cd4d7f36602ca4d445a10bd5ceed64bcbf550b8c9c72a062edd7cc

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 970ef22ed94da77aa657b40fd3e56ccd7ee1c268ef6d32b96e173936cd295213
MD5 b4a31108e20c8bbd53a2a308f0693c74
BLAKE2b-256 7fbfb05de02214d9bb01a390b6e23a022db78a0506f6590bd7f9104622fbffaf

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 726fb1cba25a4447a5b284030c1a0e7927220e175b0c896e0932d8d05cfe8d75
MD5 aa85e3bce4a07c71c241ca69e361addb
BLAKE2b-256 4aa910157070784b001fca7c7c20d80d1dafd7e883b682f80c647cd1913705c9

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c9795b2533f1d5758f8ea0c2d95cbe60c0e9be4f12eb8e7ed178068abe861a4a
MD5 ced992b06e8fae5c0577bac002a8631b
BLAKE2b-256 42dd1e660d0b6373ce469b23ecaa4a16b28e60b60cac60cc676b23237f0186e2

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5690501fa62584a29d96642cf90038f924f1441d003eb80ae71c03f24dfd7a7b
MD5 23445b57c691ffb54ea16a4df944a0ab
BLAKE2b-256 8181a42952770aa9dc8e27a757199856791d09a51c3c1d84aaef6ce8b10b27d7

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cac889b028db22d8fbe3465b96df0b5598d1ac03a9bc28e9d8277776febd8b7e
MD5 11ce5d160680d974a7cc69e2a95afd63
BLAKE2b-256 1aa2c6054d625ee4f10e224678db7eaa88107bb46d6b58efdcdc98b363d198ff

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ab4add643fe08aaddfd584810b139afff8e2f89115cb85a6dd658f64afdca25
MD5 13647370de46fd7bd90f98d7e5479278
BLAKE2b-256 1b477a9323b7b406f0f58e5df03a8cb02cbb04a92d5d4afe4059beb5f60e8813

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4f9e451294f904ff783478c97d7d542b68bf2e6cc33774be55db204ff3d57afb
MD5 79d0f426e8e64d666b0b91854f016222
BLAKE2b-256 cd6e07d033cd38d75175a371c7ff06a398542ee800a412fc2f83f255c6e36e67

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3a09ec8f72c3c8f671dc3b5e5fd908283e782fae9c918e380a0e3c65b32582ab
MD5 01300bcc6bf376d0077e5089bdd4fc48
BLAKE2b-256 13e43a6064fc5f0c8e13812575099bd95d7f25576963b5b3f25503589e8c735e

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 184cc2e164fb862a2e40d6be569554186b876720cc9b94642d10f19f8e4f59a2
MD5 f7e59a2ebf08614fe7540aaff134530b
BLAKE2b-256 da532b417dd8352c6cdc3a74ffffd65b81007baf71ffa4b21c83c88bd4f458d9

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 491dcb8060a0cf838dad736bcd4933882595fea967bf828028913b2204289aeb
MD5 e7ab998286aff5efac5fc1184ff3cd15
BLAKE2b-256 30799e4f3b7e419951e4118425e1a8f756d4d53423db7dc96eba640ba86245d0

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a16e2099cb7b83864fa71310dd212248cbd015baba3de305d2b496397a8023c
MD5 4e0d7755129a9523a71eb045ca2e4584
BLAKE2b-256 644183c12fd863e15b1657858dc1467ed37a1da8b78685ef82ab810670d2860e

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a42121b9f680a00c4b4143be3374c16a95d427a75563d0ffe5653406102fc8d0
MD5 0fee175d31420aa1693f59167ec972dc
BLAKE2b-256 31b7b9c3d4ad34595b558c386afdd0684c22ee5d84978d897c968f85ad7a27b6

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 24736f1e5eb0e91f6190847e50a2002af9974bd7dea8933cc14d8eec896024fc
MD5 8b9654ab3b69ad7ac1db00d4f5e4c663
BLAKE2b-256 90a376f5dbce50036cdbb9c00177fb12542147d5f5fcc9d123c00495e17d2418

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2073ac1ffccf2a4908be5980b4b849007e736edcac7c0ebc85a130c20954dafe
MD5 9f43ee4a22dc5a2b62d9b0020d5fcce2
BLAKE2b-256 dc98c77ec39ed3f9fc1d5a209cf583fd1bfea976c843861ef43b3ffde45e5ffe

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e67e3d1adafb3312d19e2d848380f0891cc7204b2a54e676d5b91b50f97a99ea
MD5 f037cc9859d03196138c3a36ce6d33f0
BLAKE2b-256 f269b8dcdcc8a3b6e9d664becd5514cd3a94739d00b70794b4a9e212b1263bbb

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 18641b996019bebc44270405d2ddc8740639ae850ef102de36e90b5ea8866b72
MD5 c0d38949578ce4e93ece4b988173662f
BLAKE2b-256 ab3032d2e00b57ab085eab10d05fc809b0d64cb3d8abef3f29cbae3a3fd0ed8f

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3ea72119565777ad2c111c92d97ca946e97744b8b3430b365975f01ba659d2c9
MD5 f6bffe66cf59895fed991b8187cdaa54
BLAKE2b-256 48fbacd4d3ac0511bd5fee7fba31e78c2475bbd3b3f5947fafa98903183c31fc

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4266a5d707a5aaa2a9ed02287061968447493c45dd925389d0fea989b3fc9a94
MD5 da7294614b28c650151486a89037a4f7
BLAKE2b-256 eda882efae48e18e58068200f0ca56f45e48c105a45379227a3915b560a93886

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9728845f68d2e3e896618e5f1552d704bf7313dd0c3335c6afb31e0bce1ea06e
MD5 2246317f623b28ae5e530df0fc035e04
BLAKE2b-256 b31f4b0190beefa6a230a0acfca91e1cddab421855fe4d80d90a8444fea4233f

See more details on using hashes here.

File details

Details for the file fast_matrix_market-1.7.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fast_matrix_market-1.7.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64affa6309ff9f5dc3a6f389f4c994b2cd359f94e0b3fe015e3ae16d0f75b825
MD5 d3257dfad49340f145564739cadf8910
BLAKE2b-256 807e2f1c042415b2bbbb54e3ef61f0aadb46d6368460ab67ec913f23fb8e74cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page