Skip to main content

C++ implementation of Neural Machine Translation of Rare Words with Subword Units, with Python API.

Project description

fastBPE

C++ implementation of Neural Machine Translation of Rare Words with Subword Units, with Python API.

Installation

Compile with:

g++ -std=c++11 -pthread -O3 fastBPE/main.cc -IfastBPE -o fast

Usage:

List commands

./fast
usage: fastbpe <command> <args>

The commands supported by fastBPE are:

getvocab input1 [input2]             extract the vocabulary from one or two text files
learnbpe nCodes input1 [input2]      learn BPE codes from one or two text files
applybpe output input codes [vocab]  apply BPE codes to a text file
applybpe_stream codes [vocab]        apply BPE codes to stdin and outputs to stdout

fastBPE also supports stdin inputs. For instance, these two commands are equivalent:

./fast getvocab text > vocab
cat text | ./fast getvocab - > vocab

But the first one will memory map the input file to read it efficiently, which can be more than twice faster than stdin on very large files. Similarly, these two commands are equivalent:

./fast applybpe output input codes vocab
cat input | ./fast applybpe_stream codes vocab > output

Although the first one will be significantly faster on large datasets, as it uses multi-threading to pre-compute the BPE splits of all words in the input file.

Learn codes

./fast learnbpe 40000 train.de train.en > codes

Apply codes to train

./fast applybpe train.de.40000 train.de codes
./fast applybpe train.en.40000 train.en codes

Get train vocabulary

./fast getvocab train.de.40000 > vocab.de.40000
./fast getvocab train.en.40000 > vocab.en.40000

Apply codes to valid and test

./fast applybpe valid.de.40000 valid.de codes vocab.de.40000
./fast applybpe valid.en.40000 valid.en codes vocab.en.40000
./fast applybpe test.de.40000  test.de  codes vocab.de.40000
./fast applybpe test.en.40000  test.en  codes vocab.en.40000

Python API

To install the Python API, simply run:

python setup.py install

Note: For Mac OSX Users, add export MACOSX_DEPLOYMENT_TARGET=10.x (x=9 or 10, depending on your version) or -stdlib=libc++ to the extra_compile_args of setup.py before/during the above install command, as appropriate.

Call the API using:

import fastBPE

bpe = fastBPE.fastBPE(codes_path, vocab_path)
bpe.apply(["Roasted barramundi fish", "Centrally managed over a client-server architecture"])

>> ['Ro@@ asted barr@@ am@@ un@@ di fish', 'Centr@@ ally managed over a cli@@ ent-@@ server architecture']

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastBPE-0.1.0.tar.gz (35.1 kB view details)

Uploaded Source

File details

Details for the file fastBPE-0.1.0.tar.gz.

File metadata

  • Download URL: fastBPE-0.1.0.tar.gz
  • Upload date:
  • Size: 35.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.25.0 CPython/3.6.8

File hashes

Hashes for fastBPE-0.1.0.tar.gz
Algorithm Hash digest
SHA256 95eef4be2689e822a918ac4eae3349cd78ca3f28af591afa421f8fac6d4cd889
MD5 16726028b89cd8970dc244ab38f1bdab
BLAKE2b-256 e137f97181428a5d151501b90b2cebedf97c81b034ace753606a3cda5ad4e6e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page