Skip to main content

Leveraging fastai to easily load and handle datasets

Project description

fastai-datasets

Docs

See https://irad-zehavi.github.io/fastai-datasets/

Install

pip install fastai_datasets

How to use

As an nbdev library, fatai_datasets supports import * (without importing unwanted symbols):

from fastai_datasets.all import *

Here are a few usage examles:

Easily load a dataset

mnist = MNIST()
mnist.dls().show_batch()

Show the class distribution

mnist.plot_class_distribution()

Sample a subset

Whole datasets:

mnist
[(#60000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]
(#10000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]]

Subset:

mnist.random_sub_dsets(1000)
[(#861) [(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(6)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(5)),(PILImageBW mode=L size=28x28, TensorCategory(1))...]
(#139) [(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(9))...]]

Construct a subset based on classes

cifar10 = CIFAR10()
dig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']
dig_frog_bird.dls().show_batch()

Construct a dataset of similarity pairs

Pairs(cifar10, .01).dls().show_batch()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai-datasets-0.0.8.tar.gz (24.7 kB view details)

Uploaded Source

Built Distribution

fastai_datasets-0.0.8-py3-none-any.whl (25.8 kB view details)

Uploaded Python 3

File details

Details for the file fastai-datasets-0.0.8.tar.gz.

File metadata

  • Download URL: fastai-datasets-0.0.8.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for fastai-datasets-0.0.8.tar.gz
Algorithm Hash digest
SHA256 d6bc7476474cc842a1e20ab2645af681c569c063dc37ae1f3c910c519b7d7ac5
MD5 42d378ca94f04f59f0b0278fdde3d1da
BLAKE2b-256 a3dedd6bad069b82d20db4fc46f6c809d3e0208f214e4533bff792e4e2caf1c1

See more details on using hashes here.

File details

Details for the file fastai_datasets-0.0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for fastai_datasets-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 b8fa18badd6ec4424f694f0a21feb384a4babbe2ab8801726068f08e01284859
MD5 0bb59337a7e7ab3c053de7fd785160de
BLAKE2b-256 4f711c414fef82a7627d3f85d8aaf98d3cf8306a0787e7dd434a2aeaf65e3cbd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page