Skip to main content

Leveraging fastai to easily load and handle datasets

Project description

fastai-datasets

Docs

See https://irad-zehavi.github.io/fastai-datasets/

Install

pip install fastai_datasets

How to use

As an nbdev library, fatai_datasets supports import * (without importing unwanted symbols):

from fastai_datasets.all import *

Here are a few usage examles:

Easily load a dataset

mnist = MNIST()
mnist.dls().show_batch()

Show the class distribution

mnist.plot_class_distribution()
Class map: scanning targets:   0%|          | 0/60000 [00:00<?, ?it/s]

Class map: partitioning:   0%|          | 0/10 [00:00<?, ?it/s]

Class map: scanning targets:   0%|          | 0/10000 [00:00<?, ?it/s]

Class map: partitioning:   0%|          | 0/10 [00:00<?, ?it/s]

Sample a subset

Whole datasets:

mnist
[(#60000) [(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0))...]
(#10000) [(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0))...]]

Subset:

mnist.random_sub_dsets(1000)
[(#874) [(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(5)),(PILImage mode=RGB size=28x28, TensorCategory(5)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(2)),(PILImage mode=RGB size=28x28, TensorCategory(4))...]
(#126) [(PILImage mode=RGB size=28x28, TensorCategory(2)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(2)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(6)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(0))...]]

Construct a subset based on classes

cifar10 = CIFAR10()
dig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']
dig_frog_bird.dls().show_batch()
Class map: scanning targets:   0%|          | 0/60000 [00:00<?, ?it/s]

Class map: partitioning:   0%|          | 0/10 [00:00<?, ?it/s]

Construct a dataset of similarity pairs

Pairs(cifar10, .01).dls().show_batch()
Class map: scanning targets: 0it [00:00, ?it/s]

Generating positive pairs:   0%|          | 0/250 [00:00<?, ?it/s]

Generating negative pairs:   0%|          | 0/250 [00:00<?, ?it/s]

Class map: scanning targets: 0it [00:00, ?it/s]

Generating positive pairs:   0%|          | 0/50 [00:00<?, ?it/s]

Generating negative pairs:   0%|          | 0/50 [00:00<?, ?it/s]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai-datasets-0.0.2.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

fastai_datasets-0.0.2-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file fastai-datasets-0.0.2.tar.gz.

File metadata

  • Download URL: fastai-datasets-0.0.2.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for fastai-datasets-0.0.2.tar.gz
Algorithm Hash digest
SHA256 93686f8880196d21208b8bef8d0ca032bc378877613cb5c524b1ca71afcdbbe2
MD5 49d5f0c3953d605dd13590f1365d9a1b
BLAKE2b-256 a9662c37bd9678236c06aff00b00d06fffe9098207f440a8d5232bd05e5a499c

See more details on using hashes here.

Provenance

File details

Details for the file fastai_datasets-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for fastai_datasets-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e495074971ada107b0c9943063b686521e3f5a8b6bb1d7f2a1a1bd83ebe97140
MD5 c0038aede9833081b4f53df4d9b2be4b
BLAKE2b-256 4ae5d6f94d2c3b25df1d6bbf42e0028176faa7a670d900b5f4cf8c3e03710c0f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page