Skip to main content

Leveraging fastai to easily load and handle datasets

Project description

fastai-datasets

Docs

See https://irad-zehavi.github.io/fastai-datasets/

Install

pip install fastai_datasets

How to use

As an nbdev library, fatai_datasets supports import * (without importing unwanted symbols):

from fastai_datasets.all import *

Here are a few usage examles:

Easily load a dataset

mnist = MNIST()
mnist.dls().show_batch()

Show the class distribution

mnist.plot_class_distribution()
<div>
  <progress value='10' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
  100.00% [10/10 00:00&lt;00:00 Class map: partitioning]
</div>

Sample a subset

Whole datasets:

mnist
[(#60000) [(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7))...]
(#10000) [(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7))...]]

Subset:

mnist.random_sub_dsets(1000)
[(#865) [(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(8)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(8)),(PILImage mode=RGB size=28x28, TensorCategory(1))...]
(#135) [(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(5)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(9))...]]

Construct a subset based on classes

cifar10 = CIFAR10()
dig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']
dig_frog_bird.dls().show_batch()
<div>
  <progress value='10' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
  100.00% [10/10 00:00&lt;00:00 Class map: partitioning]
</div>

Construct a dataset of similarity pairs

Pairs(cifar10, .01).dls().show_batch()
<div>
  <progress value='50' class='' max='50' style='width:300px; height:20px; vertical-align: middle;'></progress>
  100.00% [50/50 00:00&lt;00:00 Generating negative pairs]
</div>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai-datasets-0.0.3.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

fastai_datasets-0.0.3-py3-none-any.whl (25.4 kB view details)

Uploaded Python 3

File details

Details for the file fastai-datasets-0.0.3.tar.gz.

File metadata

  • Download URL: fastai-datasets-0.0.3.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for fastai-datasets-0.0.3.tar.gz
Algorithm Hash digest
SHA256 7a581d5df13b894c8bab76c3e5be768857a11795b8a5b4fe3fd152872c9664fc
MD5 2f9c10ca744de884a4d5cf3c32c9415f
BLAKE2b-256 41e34a1ca62a1902a982616ebeacfe710ca20d8551761707d368dac85acef3d4

See more details on using hashes here.

Provenance

File details

Details for the file fastai_datasets-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for fastai_datasets-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a6cbac759f960fec5e3893f7daa5a689a41eb4a8cd0569d919196b0ee5911a59
MD5 4ea7d36eb3bc981856368d7d0de6deca
BLAKE2b-256 c5f3dd45a4cd37477d8ef9630b7468092f78eae618f1da493a33b57e5e7d52af

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page