Skip to main content

Leveraging fastai to easily load and handle datasets

Project description

fastai-datasets

Docs

See https://irad-zehavi.github.io/fastai-datasets/

Install

pip install fastai_datasets

How to use

As an nbdev library, fatai_datasets supports import * (without importing unwanted symbols):

from fastai_datasets.all import *

Here are a few usage examles:

Easily load a dataset

mnist = MNIST()
mnist.dls().show_batch()

Show the class distribution

mnist.plot_class_distribution()
<div>
  <progress value='10' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
  100.00% [10/10 00:00&lt;00:00 Class map: partitioning]
</div>

Sample a subset

Whole datasets:

mnist
[(#60000) [(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7))...]
(#10000) [(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7)),(PILImage mode=RGB size=28x28, TensorCategory(7))...]]

Subset:

mnist.random_sub_dsets(1000)
[(#865) [(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(8)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(8)),(PILImage mode=RGB size=28x28, TensorCategory(1))...]
(#135) [(PILImage mode=RGB size=28x28, TensorCategory(3)),(PILImage mode=RGB size=28x28, TensorCategory(9)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(5)),(PILImage mode=RGB size=28x28, TensorCategory(0)),(PILImage mode=RGB size=28x28, TensorCategory(4)),(PILImage mode=RGB size=28x28, TensorCategory(1)),(PILImage mode=RGB size=28x28, TensorCategory(9))...]]

Construct a subset based on classes

cifar10 = CIFAR10()
dig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']
dig_frog_bird.dls().show_batch()
<div>
  <progress value='10' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
  100.00% [10/10 00:00&lt;00:00 Class map: partitioning]
</div>

Construct a dataset of similarity pairs

Pairs(cifar10, .01).dls().show_batch()
<div>
  <progress value='50' class='' max='50' style='width:300px; height:20px; vertical-align: middle;'></progress>
  100.00% [50/50 00:00&lt;00:00 Generating negative pairs]
</div>

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai-datasets-0.0.5.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

fastai_datasets-0.0.5-py3-none-any.whl (25.3 kB view details)

Uploaded Python 3

File details

Details for the file fastai-datasets-0.0.5.tar.gz.

File metadata

  • Download URL: fastai-datasets-0.0.5.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for fastai-datasets-0.0.5.tar.gz
Algorithm Hash digest
SHA256 8bc90f9112febb26c7fa7b6922dbd8a33109479816605c2a01937b023b1e5695
MD5 f916330d8d60c17d88dede61a87e9fab
BLAKE2b-256 5eb3302bf697383b22b50c91a4175e165b68846669d589f57c7300559be54595

See more details on using hashes here.

Provenance

File details

Details for the file fastai_datasets-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for fastai_datasets-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 088f3d9450d6f98343a981303dd76ed1273bfcc5804b19e001dc0224ed0f4c67
MD5 892ac01af2d8fb12640920b5728894f6
BLAKE2b-256 577e74db9a36d6f6cdded2386ada0a5b12fd8a145a4e655bb9cf179e19b4ddfd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page