Leveraging fastai to easily load and handle datasets
Project description
fastai-datasets
Docs
See https://irad-zehavi.github.io/fastai-datasets/
Install
pip install fastai_datasets
How to use
As an nbdev library, fatai_datasets
supports import *
(without
importing unwanted symbols):
from fastai_datasets.all import *
Here are a few usage examles:
Easily load a dataset
mnist = MNIST()
mnist.dls().show_batch()
Show the class distribution
mnist.plot_class_distribution()
<div>
<progress value='10' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
100.00% [10/10 00:00<00:00]
</div>
Sample a subset
Whole datasets:
mnist
[(#60000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]
(#10000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]]
Subset:
mnist.random_sub_dsets(1000)
[(#881) [(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(9)),(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(9)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(4))...]
(#119) [(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(9)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(9))...]]
Construct a subset based on classes
cifar10 = CIFAR10()
dig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']
dig_frog_bird.dls().show_batch()
<div>
<progress value='10' class='' max='10' style='width:300px; height:20px; vertical-align: middle;'></progress>
100.00% [10/10 00:00<00:00]
</div>
Construct a dataset of similarity pairs
Pairs(cifar10, .01).dls().show_batch()
<div>
<progress value='50' class='' max='50' style='width:300px; height:20px; vertical-align: middle;'></progress>
100.00% [50/50 00:00<00:00]
</div>
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fastai-datasets-0.0.6.tar.gz
(24.6 kB
view details)
Built Distribution
File details
Details for the file fastai-datasets-0.0.6.tar.gz
.
File metadata
- Download URL: fastai-datasets-0.0.6.tar.gz
- Upload date:
- Size: 24.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8c34847f4825fab9c24d8d6dda2daf5a65f21bcebc2dbe301f42f9c8c9e35ef0 |
|
MD5 | 09a5a76ab878915d43f3079d5ab1c3e9 |
|
BLAKE2b-256 | 45c4b9d3224ef9b9f88593796e62063c65b80b6dbedd86e584d10b7567556fa3 |
Provenance
File details
Details for the file fastai_datasets-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: fastai_datasets-0.0.6-py3-none-any.whl
- Upload date:
- Size: 25.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc34b09f8e84e692ad75186703eed6c68c2ad64e282bdbd01d3faa4880722e8b |
|
MD5 | 8af12c6846673a1658889d38d9665b12 |
|
BLAKE2b-256 | 9e45a53b5495efb907e2c62189428bd559bad536c7913ffdea652b7c47442b40 |