Skip to main content

A minimal version of fastai with only what's needed for the training loop

Project description

fastai_minima

A mimal version of fastai with the barebones needed to work with Pytorch

#all_slow

Install

pip install fastai_minima

How to use

This library is designed to bring in only the minimal needed from fastai to work with raw Pytorch. This includes:

  • Learner
  • Callbacks
  • Optimizer
  • DataLoaders (but not the DataBlock)
  • Metrics

Below we can find a very minimal example based off my Pytorch to fastai, Bridging the Gap article:

import torch
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))])

dset_train = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)

dset_test = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)

trainloader = torch.utils.data.DataLoader(dset_train, batch_size=4,
                                          shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(dset_test, batch_size=4,
                                         shuffle=False, num_workers=2)
Files already downloaded and verified
Files already downloaded and verified
import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
criterion = nn.CrossEntropyLoss()
from torch import optim
from fastai_minima.optimizer import OptimWrapper
from fastai_minima.learner import Learner, DataLoaders
from fastai_minima.callback.training import CudaCallback, ProgressCallback
def opt_func(params, **kwargs): return OptimWrapper(optim.SGD(params, **kwargs))

dls = DataLoaders(trainloader, testloader)
learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func)

# To use the GPU, do 
# learn = Learner(dls, Net(), loss_func=criterion, opt_func=opt_func, cbs=[CudaCallback()])
learn.fit(2, lr=0.001)
epoch train_loss valid_loss time
0 2.269467 2.266472 01:20
1 1.876898 1.879593 01:21
/mnt/d/lib/python3.7/site-packages/torch/autograd/__init__.py:132: UserWarning: CUDA initialization: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx (Triggered internally at  /pytorch/c10/cuda/CUDAFunctions.cpp:100.)
  allow_unreachable=True)  # allow_unreachable flag

If you want to do differential learning rates, when creating your splitter to pass into fastai's Learner you should utilize the convert_params to make it compatable with Pytorch Optimizers:

def splitter(m): return convert_params([[m.a], [m.b]])
learn = Learner(..., splitter=splitter)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastai_minima-0.0.9.tar.gz (33.3 kB view details)

Uploaded Source

Built Distribution

fastai_minima-0.0.9-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file fastai_minima-0.0.9.tar.gz.

File metadata

  • Download URL: fastai_minima-0.0.9.tar.gz
  • Upload date:
  • Size: 33.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.0

File hashes

Hashes for fastai_minima-0.0.9.tar.gz
Algorithm Hash digest
SHA256 d51732a8c25d837e31ba0a2ea9636f0bd648f259fb1418cb16f5d6bbe34a860a
MD5 33a11904a5b6d76e48ea9733490e4e0f
BLAKE2b-256 96e058cbe5a6bd879316d34643022b94dbe1e58b28d16be5932290bc42248b98

See more details on using hashes here.

File details

Details for the file fastai_minima-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: fastai_minima-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/57.0.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.0

File hashes

Hashes for fastai_minima-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 34954784dc900df6365d0ef55dffe060adbe523c6d10677abc2e39f403c1a47f
MD5 b52e1380e947f6a92932b54ebb854f3f
BLAKE2b-256 2f413254004020421df73be154c8e41ea1826213e15b595f1c8e72bc3f0d2749

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page