ML model deployment of Advertising dataset.
Project description
Packaging
Python is dynamically typed and non-compiled language. Python requires that the environment you run in has an appropriate Python interpreter and the ability to install the libraries and packages you need.
Create a github repo
https://github.com/erkansirin78/fastapi-advertising-prediction.git
Add setup.cfg
[metadata]
name = fastapi_advertising_prediction
version = 0.0.1
author = Erkan SIRIN
author_email = erkansirin.datalonga@gmail.com
description = ML model deployment of Advertising dataset.
long_description = file: README.md
long_description_content_type = text/markdown
url = https://github.com/erkansirin78/fastapi-advertising-prediction
classifiers =
Programming Language :: Python :: 3
License :: OSI Approved :: MIT License
Operating System :: OS Independent
[options]
packages = find:
python_requires = >=3.7
include_package_data = True
Add pyproject.toml
[build-system]
requires = [
"setuptools>=54",
"wheel"
]
build-backend = "setuptools.build_meta"
Add a license
- Visit https://choosealicense.com/ and pick-up that suits your need.
Build
pip install build
python -m build
- Build will create new files
.
├── dist
│ ├── fastapi_advertising_prediction-0.0.1-py3-none-any.whl
│ └── fastapi_advertising_prediction-0.0.1.tar.gz
├── fastapi_advertising_prediction
│ ├── Dockerfile
│ ├── __init__.py
│ ├── main.py
│ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ ├── main.cpython-38.pyc
│ │ ├── schemas.cpython-38.pyc
│ │ └── train.cpython-38.pyc
│ ├── requirements.txt
│ ├── saved_models
│ │ └── 03.randomforest_with_advertising.pkl
│ ├── schemas.py
│ └── train.py
├── fastapi_advertising_prediction.egg-info
│ ├── dependency_links.txt
│ ├── PKG-INFO
│ ├── SOURCES.txt
│ └── top_level.txt
├── LICENSE
├── pyproject.toml
├── README.md
└── setup.cfg
5 directories, 21 files
- Check dist folder
tree dist/
dist/
├── fastapi_advertising_prediction-0.0.1-py3-none-any.whl
└── fastapi_advertising_prediction-0.0.1.tar.gz
Create an account on test.pypi.org
- Before pypi one we upload test.pypi to see everything is good.
Install twine
pip install twine
Upload package with twine
twine upload --repository testpypi dist/* --verbose
- Expected output
Uploading distributions to https://test.pypi.org/legacy/
INFO dist/fastapi_advertising_prediction-0.0.1-py3-none-any.whl (4.6 KB)
INFO dist/fastapi_advertising_prediction-0.0.1.tar.gz (3.3 KB)
INFO Querying keyring for username
Enter your username: erkansirin
INFO Querying keyring for password
WARNING No recommended backend was available. Install a recommended 3rd party backend
package; or, install the keyrings.alt package if you want to use the
non-recommended backends. See https://pypi.org/project/keyring for details.
Enter your password:
INFO username: erkansirin
INFO password: <hidden>
Uploading fastapi_advertising_prediction-0.0.1-py3-none-any.whl
100% ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.9/8.9 kB • 00:00 • 1.6 MB/s
INFO Response from https://test.pypi.org/legacy/:
200 OK
Uploading fastapi_advertising_prediction-0.0.1.tar.gz
100% ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.6/7.6 kB • 00:00 • ?
INFO Response from https://test.pypi.org/legacy/:
200 OK
View at:
https://test.pypi.org/project/fastapi-advertising-prediction/0.0.1/
Install from test.pypi.org
pip install -i https://test.pypi.org/simple/ fastapi-advertising-prediction==0.0.1
Enter python shell
python
Test package
>>> from fastapi_advertising_prediction import train
>>> train.read_and_train()
- Expected output
ID TV Radio Newspaper Sales
0 1 230.1 37.8 69.2 22.1
1 2 44.5 39.3 45.1 10.4
2 3 17.2 45.9 69.3 9.3
3 4 151.5 41.3 58.5 18.5
4 5 180.8 10.8 58.4 12.9
(200, 3)
[[230.1 37.8 69.2]
[ 44.5 39.3 45.1]
[ 17.2 45.9 69.3]]
(200,)
0 22.1
1 10.4
2 9.3
3 18.5
4 12.9
5 7.2
Name: Sales, dtype: float64
R2:
X_manual_test [[230.1, 37.8, 69.2]]
prediction [22.0715]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Close
Hashes for fastapi_advertising_prediction-0.0.2.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | d13b8ca4e5088cd79249e6b97950c0d5708119c5c18739f8bce693abeeab1a33 |
|
MD5 | 91e7d38a60ff237649ab5f8cec5e86ad |
|
BLAKE2b-256 | 7ad176612c7d2d64aaadd3d74000d5684aae876e1c5bc9d36ca87be60ef5a76f |
Close
Hashes for fastapi_advertising_prediction-0.0.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20b2696699c902d23c782fcbdcff4e0b2ebce1527ef138a95a2a6a07d82558aa |
|
MD5 | 002072be393a87f216a1c8b1affab673 |
|
BLAKE2b-256 | 32e244d2ded960d57556f913b958a8cfc64226922feca2460723ebec05667e37 |