This toolkit can generate database CRUD operations based on defined metadata in one click, basic fastapi routing and mock data scripts.
Project description
fastapi_toolkit
定义基础模型
metadata
class Item(Schema):
field_int: int
field_float: float
field_string: str
field_date: datetime.date
field_datetime: datetime.datetime
生成代码
schema
class SchemaBaseItem(Schema):
"""pk"""
id: int = Field(default=None)
deleted_at: Optional[datetime.datetime] = Field(default=None, exclude=True)
created_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
updated_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
"""fields"""
field_int: int = Field()
field_float: float = Field()
field_string: str = Field()
field_date: datetime.date = Field()
field_datetime: datetime.datetime = Field()
class SchemaItem(SchemaBaseItem):
"""relationships"""
model
class DBItem(Base):
__tablename__ = "item"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
field_int: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)
field_float: Mapped[float] = mapped_column(sqltypes.Float, nullable=False)
field_string: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)
field_date: Mapped[datetime.date] = mapped_column(sqltypes.Date, nullable=False)
field_datetime: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime, nullable=False)
定义关联模型
一对一
class Student(Schema):
name: str
pass_card: 'PassCard'
class PassCard(Schema):
account: int
student: 'Student'
Got
class DBStudent(Base):
__tablename__ = "student"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)
_fk_pass_card_pass_card_id: Mapped[int] = mapped_column(ForeignKey("pass_card.id"), nullable=True)
pass_card: Mapped[Optional["DBPassCard"]] = relationship(
back_populates="student",
)
class DBPassCard(Base):
__tablename__ = "pass_card"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
account: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)
student: Mapped[Optional["DBStudent"]] = relationship(
back_populates="pass_card",
)
一对一 多重关联
class Student(Schema):
name: str
mentor_teacher: 'Teacher'
tutor_teacher: 'Teacher'
class Teacher(Schema):
name: str
mentor_student: 'Student'
tutor_student: 'Student'
Got
class DBStudent(Base):
__tablename__ = "student"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)
_fk_mentor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)
mentor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
back_populates="mentor_student",
)
_fk_tutor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)
tutor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
back_populates="tutor_student",
)
class DBTeacher(Base):
__tablename__ = "teacher"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)
mentor_student: Mapped[Optional["DBStudent"]] = relationship(
back_populates="mentor_teacher",
)
tutor_student: Mapped[Optional["DBStudent"]] = relationship(
back_populates="tutor_teacher",
)
PS: 为了绑定双向关联,关联必须拥有相同的前缀,同时以关联对象的名称(复数)结尾
mentor_teacher < --- > mentor_student
mentor_teacher < --- > mentor_students // 当一个老师领导多个学生
mentor_students显然意义不明,所以可以使用alias特性得到更可读的代码
使用alias
class Student(Schema):
name: str
mentor: 'Teacher' = Field(alias='mentor_teacher')
tutor: 'Teacher' = Field(alias='tutor_teacher')
class Teacher(Schema):
name: str
mentee: 'Student' = Field(alias='mentor_student')
trainee: 'Student' = Field(alias='tutor_student')
Got
成功绑定关联的同时,获得了更可读的字段名,也不需要遵守必须以目标对象名字结尾的要求
但是alias要遵守规则,同时alias仅用于绑定关联
class DBStudent(Base):
__tablename__ = "student"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)
_fk_mentor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)
mentor: Mapped[Optional["DBTeacher"]] = relationship(
back_populates="mentee",
)
_fk_tutor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)
tutor: Mapped[Optional["DBTeacher"]] = relationship(
back_populates="trainee",
)
class DBTeacher(Base):
__tablename__ = "teacher"
id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)
mentee: Mapped[Optional["DBStudent"]] = relationship(
back_populates="mentor",
)
trainee: Mapped[Optional["DBStudent"]] = relationship(
back_populates="tutor",
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fastapi_toolkit_shawn587-0.2.3.16.tar.gz
.
File metadata
- Download URL: fastapi_toolkit_shawn587-0.2.3.16.tar.gz
- Upload date:
- Size: 25.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.13.0 Darwin/23.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d80594e98a0e214cf3d34d9b962f28623caddcf1b776d29119ab4b213268d35c |
|
MD5 | 967107f6e980b70373e971d9ff6508e3 |
|
BLAKE2b-256 | cbce7b5478ff8a9a130a86fd6daf69887943560923668e57a49191046163b07a |
File details
Details for the file fastapi_toolkit_shawn587-0.2.3.16-py3-none-any.whl
.
File metadata
- Download URL: fastapi_toolkit_shawn587-0.2.3.16-py3-none-any.whl
- Upload date:
- Size: 41.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.4 CPython/3.13.0 Darwin/23.5.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61f19db63646615c4e7067baa0ad8aab7dc2fc2a1be43b1a8ad509e3f340559d |
|
MD5 | b1b14cadc933e92e25afd0e42d2b4179 |
|
BLAKE2b-256 | 1f998663c29c6e1615d41a8d52b87ee702ced30994e162bd0a4cef31286c51a3 |