Skip to main content

This toolkit can generate database CRUD operations based on defined metadata in one click, basic fastapi routing and mock data scripts.

Project description

fastapi_toolkit

定义基础模型

metadata

class Item(Schema):
    field_int: int
    field_float: float
    field_string: str
    field_date: datetime.date
    field_datetime: datetime.datetime

生成代码

schema

class SchemaBaseItem(Schema):
    """pk"""
    id: int = Field(default=None)

    deleted_at: Optional[datetime.datetime] = Field(default=None, exclude=True)
    created_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
    updated_at: datetime.datetime = Field(default_factory=datetime.datetime.now)

    """fields"""
    field_int: int = Field()

    field_float: float = Field()

    field_string: str = Field()

    field_date: datetime.date = Field()

    field_datetime: datetime.datetime = Field()


class SchemaItem(SchemaBaseItem):
    """relationships"""

model

class DBItem(Base):
    __tablename__ = "item"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    field_int: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)

    field_float: Mapped[float] = mapped_column(sqltypes.Float, nullable=False)

    field_string: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    field_date: Mapped[datetime.date] = mapped_column(sqltypes.Date, nullable=False)

    field_datetime: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime, nullable=False)

定义关联模型

一对一

class Student(Schema):
    name: str
    pass_card: 'PassCard'


class PassCard(Schema):
    account: int
    student: 'Student'

Got

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_pass_card_pass_card_id: Mapped[int] = mapped_column(ForeignKey("pass_card.id"), nullable=True)

    pass_card: Mapped[Optional["DBPassCard"]] = relationship(
        back_populates="student",
    )


class DBPassCard(Base):
    __tablename__ = "pass_card"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    account: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)

    student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="pass_card",
    )

一对一 多重关联

class Student(Schema):
    name: str
    mentor_teacher: 'Teacher'
    tutor_teacher: 'Teacher'


class Teacher(Schema):
    name: str
    mentor_student: 'Student'
    tutor_student: 'Student'

Got

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_mentor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    mentor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="mentor_student",
    )

    _fk_tutor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    tutor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="tutor_student",
    )


class DBTeacher(Base):
    __tablename__ = "teacher"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    mentor_student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="mentor_teacher",
    )

    tutor_student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="tutor_teacher",
    )

PS: 为了绑定双向关联,关联必须拥有相同的前缀,同时以关联对象的名称(复数)结尾

mentor_teacher < --- > mentor_student

mentor_teacher < --- > mentor_students // 当一个老师领导多个学生

mentor_students显然意义不明,所以可以使用alias特性得到更可读的代码

使用alias

class Student(Schema):
    name: str
    mentor: 'Teacher' = Field(alias='mentor_teacher')
    tutor: 'Teacher' = Field(alias='tutor_teacher')


class Teacher(Schema):
    name: str
    mentee: 'Student' = Field(alias='mentor_student')
    trainee: 'Student' = Field(alias='tutor_student')

Got

成功绑定关联的同时,获得了更可读的字段名,也不需要遵守必须以目标对象名字结尾的要求

但是alias要遵守规则,同时alias仅用于绑定关联

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_mentor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    mentor: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="mentee",
    )

    _fk_tutor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    tutor: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="trainee",
    )


class DBTeacher(Base):
    __tablename__ = "teacher"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    mentee: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="mentor",
    )

    trainee: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="tutor",
    )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastapi_toolkit_shawn587-0.2.2.12.tar.gz (26.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fastapi_toolkit_shawn587-0.2.2.12.tar.gz.

File metadata

File hashes

Hashes for fastapi_toolkit_shawn587-0.2.2.12.tar.gz
Algorithm Hash digest
SHA256 450523fc5956258f2d62d7543c43345fc740e69d55c837f9ce807bc61df1f307
MD5 dac3c4c534d6371fa77e305cb85a9781
BLAKE2b-256 fdcc91ab57437babf3ab13faeaa650f7324cee5479a30c9be254536496dcb588

See more details on using hashes here.

File details

Details for the file fastapi_toolkit_shawn587-0.2.2.12-py3-none-any.whl.

File metadata

File hashes

Hashes for fastapi_toolkit_shawn587-0.2.2.12-py3-none-any.whl
Algorithm Hash digest
SHA256 d2148845bc1621d601ef2ab4e3ebb470399be3b0067ebd820f1adf7d3a54c978
MD5 dc61064bc3080bebcfdc2e86019172d8
BLAKE2b-256 bf22c521c1a7e5db24244a65b4351f4b5ed36e894673f8b4efc31c442dd84727

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page