Skip to main content

This toolkit can generate database CRUD operations based on defined metadata in one click, basic fastapi routing and mock data scripts.

Project description

fastapi_toolkit

定义基础模型

metadata

class Item(Schema):
    field_int: int
    field_float: float
    field_string: str
    field_date: datetime.date
    field_datetime: datetime.datetime

生成代码

schema

class SchemaBaseItem(Schema):
    """pk"""
    id: int = Field(default=None)

    deleted_at: Optional[datetime.datetime] = Field(default=None, exclude=True)
    created_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
    updated_at: datetime.datetime = Field(default_factory=datetime.datetime.now)

    """fields"""
    field_int: int = Field()

    field_float: float = Field()

    field_string: str = Field()

    field_date: datetime.date = Field()

    field_datetime: datetime.datetime = Field()


class SchemaItem(SchemaBaseItem):
    """relationships"""

model

class DBItem(Base):
    __tablename__ = "item"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    field_int: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)

    field_float: Mapped[float] = mapped_column(sqltypes.Float, nullable=False)

    field_string: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    field_date: Mapped[datetime.date] = mapped_column(sqltypes.Date, nullable=False)

    field_datetime: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime, nullable=False)

定义关联模型

一对一

class Student(Schema):
    name: str
    pass_card: 'PassCard'


class PassCard(Schema):
    account: int
    student: 'Student'

Got

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_pass_card_pass_card_id: Mapped[int] = mapped_column(ForeignKey("pass_card.id"), nullable=True)

    pass_card: Mapped[Optional["DBPassCard"]] = relationship(
        back_populates="student",
    )


class DBPassCard(Base):
    __tablename__ = "pass_card"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    account: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)

    student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="pass_card",
    )

一对一 多重关联

class Student(Schema):
    name: str
    mentor_teacher: 'Teacher'
    tutor_teacher: 'Teacher'


class Teacher(Schema):
    name: str
    mentor_student: 'Student'
    tutor_student: 'Student'

Got

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_mentor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    mentor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="mentor_student",
    )

    _fk_tutor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    tutor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="tutor_student",
    )


class DBTeacher(Base):
    __tablename__ = "teacher"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    mentor_student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="mentor_teacher",
    )

    tutor_student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="tutor_teacher",
    )

PS: 为了绑定双向关联,关联必须拥有相同的前缀,同时以关联对象的名称(复数)结尾

mentor_teacher < --- > mentor_student

mentor_teacher < --- > mentor_students // 当一个老师领导多个学生

mentor_students显然意义不明,所以可以使用alias特性得到更可读的代码

使用alias

class Student(Schema):
    name: str
    mentor: 'Teacher' = Field(alias='mentor_teacher')
    tutor: 'Teacher' = Field(alias='tutor_teacher')


class Teacher(Schema):
    name: str
    mentee: 'Student' = Field(alias='mentor_student')
    trainee: 'Student' = Field(alias='tutor_student')

Got

成功绑定关联的同时,获得了更可读的字段名,也不需要遵守必须以目标对象名字结尾的要求

但是alias要遵守规则,同时alias仅用于绑定关联

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_mentor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    mentor: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="mentee",
    )

    _fk_tutor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    tutor: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="trainee",
    )


class DBTeacher(Base):
    __tablename__ = "teacher"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    mentee: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="mentor",
    )

    trainee: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="tutor",
    )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastapi_toolkit_shawn587-0.2.3.10.tar.gz (25.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fastapi_toolkit_shawn587-0.2.3.10.tar.gz.

File metadata

File hashes

Hashes for fastapi_toolkit_shawn587-0.2.3.10.tar.gz
Algorithm Hash digest
SHA256 6a28444055674ab4d935204441f4879f629ba9c38156491bfa912416a84e23cd
MD5 960475b5f8d022a961df90fcdca1ce9c
BLAKE2b-256 04f63dda2a4b17eca4c2a30eb82c9e8af946a1f0ba97c58ada45e6861da11cd4

See more details on using hashes here.

File details

Details for the file fastapi_toolkit_shawn587-0.2.3.10-py3-none-any.whl.

File metadata

File hashes

Hashes for fastapi_toolkit_shawn587-0.2.3.10-py3-none-any.whl
Algorithm Hash digest
SHA256 fd010867081191b30a3e5aa60d11ec1f684b11e7c8cdd290e94bcfdf8dec073b
MD5 13f6b048821c7f403d55cee245e11e9f
BLAKE2b-256 184edf7ed6599fcaa55c6f1985d06b36667de0edeb9063866f883108e585b967

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page