Skip to main content

This toolkit can generate database CRUD operations based on defined metadata in one click, basic fastapi routing and mock data scripts.

Project description

fastapi_toolkit

定义基础模型

metadata

class Item(Schema):
    field_int: int
    field_float: float
    field_string: str
    field_date: datetime.date
    field_datetime: datetime.datetime

生成代码

schema

class SchemaBaseItem(Schema):
    """pk"""
    id: int = Field(default=None)

    deleted_at: Optional[datetime.datetime] = Field(default=None, exclude=True)
    created_at: datetime.datetime = Field(default_factory=datetime.datetime.now)
    updated_at: datetime.datetime = Field(default_factory=datetime.datetime.now)

    """fields"""
    field_int: int = Field()

    field_float: float = Field()

    field_string: str = Field()

    field_date: datetime.date = Field()

    field_datetime: datetime.datetime = Field()


class SchemaItem(SchemaBaseItem):
    """relationships"""

model

class DBItem(Base):
    __tablename__ = "item"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    field_int: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)

    field_float: Mapped[float] = mapped_column(sqltypes.Float, nullable=False)

    field_string: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    field_date: Mapped[datetime.date] = mapped_column(sqltypes.Date, nullable=False)

    field_datetime: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime, nullable=False)

定义关联模型

一对一

class Student(Schema):
    name: str
    pass_card: 'PassCard'


class PassCard(Schema):
    account: int
    student: 'Student'

Got

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_pass_card_pass_card_id: Mapped[int] = mapped_column(ForeignKey("pass_card.id"), nullable=True)

    pass_card: Mapped[Optional["DBPassCard"]] = relationship(
        back_populates="student",
    )


class DBPassCard(Base):
    __tablename__ = "pass_card"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    account: Mapped[int] = mapped_column(sqltypes.Integer, nullable=False)

    student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="pass_card",
    )

一对一 多重关联

class Student(Schema):
    name: str
    mentor_teacher: 'Teacher'
    tutor_teacher: 'Teacher'


class Teacher(Schema):
    name: str
    mentor_student: 'Student'
    tutor_student: 'Student'

Got

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_mentor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    mentor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="mentor_student",
    )

    _fk_tutor_teacher_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    tutor_teacher: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="tutor_student",
    )


class DBTeacher(Base):
    __tablename__ = "teacher"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    mentor_student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="mentor_teacher",
    )

    tutor_student: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="tutor_teacher",
    )

PS: 为了绑定双向关联,关联必须拥有相同的前缀,同时以关联对象的名称(复数)结尾

mentor_teacher < --- > mentor_student

mentor_teacher < --- > mentor_students // 当一个老师领导多个学生

mentor_students显然意义不明,所以可以使用alias特性得到更可读的代码

使用alias

class Student(Schema):
    name: str
    mentor: 'Teacher' = Field(alias='mentor_teacher')
    tutor: 'Teacher' = Field(alias='tutor_teacher')


class Teacher(Schema):
    name: str
    mentee: 'Student' = Field(alias='mentor_student')
    trainee: 'Student' = Field(alias='tutor_student')

Got

成功绑定关联的同时,获得了更可读的字段名,也不需要遵守必须以目标对象名字结尾的要求

但是alias要遵守规则,同时alias仅用于绑定关联

class DBStudent(Base):
    __tablename__ = "student"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    _fk_mentor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    mentor: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="mentee",
    )

    _fk_tutor_teacher_id: Mapped[int] = mapped_column(ForeignKey("teacher.id"), nullable=True)

    tutor: Mapped[Optional["DBTeacher"]] = relationship(
        back_populates="trainee",
    )


class DBTeacher(Base):
    __tablename__ = "teacher"

    id: Mapped[int] = mapped_column(sqltypes.Integer, primary_key=True, autoincrement=True)
    deleted_at: Mapped[Optional[datetime.datetime]] = mapped_column(sqltypes.DateTime, nullable=True)
    created_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)
    updated_at: Mapped[datetime.datetime] = mapped_column(sqltypes.DateTime)

    name: Mapped[str] = mapped_column(sqltypes.Text, nullable=False)

    mentee: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="mentor",
    )

    trainee: Mapped[Optional["DBStudent"]] = relationship(
        back_populates="tutor",
    )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastapi_toolkit_shawn587-0.2.3.9.tar.gz (27.0 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file fastapi_toolkit_shawn587-0.2.3.9.tar.gz.

File metadata

File hashes

Hashes for fastapi_toolkit_shawn587-0.2.3.9.tar.gz
Algorithm Hash digest
SHA256 cdf6a622f0bd296a3cd6cbbe8389a7a3d798f2ff8e23600e9213d85ce11783a6
MD5 52fa0ad58b007b062707b17a0ccfe8b6
BLAKE2b-256 2a95eecbba64d3c35f2357489e2a4f593c2a052979ae2ba420a348c637b68533

See more details on using hashes here.

File details

Details for the file fastapi_toolkit_shawn587-0.2.3.9-py3-none-any.whl.

File metadata

File hashes

Hashes for fastapi_toolkit_shawn587-0.2.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 2441dad585d285d43e4b864c771dc5210e82f67dc11dcfe79f023111b085c6a6
MD5 86e4d8fa771c9e2d264e54b1d3b8aed9
BLAKE2b-256 1115c5902b0aabd25a33774d7445e46dea4617b1bd2b712f581ce412cc73da14

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page