A simple framework for fast and dirty backtesting
Project description
Introduction
fastbt is a simple and dirty way to do backtests based on end of day data, especially for day trading. The main purpose is to provide a simple framework to weed out bad strategies so that you could test and improve your better strategies further.
It is based on the assumption that you enter into a position based on some pre-defined rules for a defined period and exit either at the end of the period or when stop loss is triggered. See the rationale for this approach and the built-in assumptions. fastbt is rule-based and not event-based.
If your strategy gets you good results, then check them with a full featured backtesting framework such as zipline or backtrader to verify your results. If your strategy fails, then it would most probably fail in other environments.
This is alpha
Most of the modules are stand alone and you could use them as a single file. See embedding for more details
Features
- Create your strategies in Microsoft Excel
- Backtest as functions so you can parallelize
- Try different simulations
- Run from your own datasource or a database connection.
- Run backtest based on rules
- Add any column you want to your datasource as formulas
Installation
fastbt requires python >=3.6 and can be installed via pip
pip install fastbt
Quickstart
Fastbt assumes your data have the following columns (rename them in case of other names)
- timestamp
- symbol
- open
- high
- low
- close
- volume
from fastbt.rapid import *
backtest(data=data)
would return a dataframe with all the trades.
And if you want to see some metrics
metrics(backtest(data=data))
You now ran a backtest without a strategy! By default, the strategy buys the top 5 stocks with the lowest price at open price on each period and sells them at the close price at the end of the period.
You can either specify the strategy by way of rules (the recommended way) or create your strategy as a function in python and pass it as a parameter
backtest(data=data, strategy=strategy)
If you want to connect to a database, then
from sqlalchemy import create_engine
engine = create_engine('sqlite:///data.db')
backtest(connection=engine, tablename='data')
And to SELL instead of BUY
backtest(data=data, order='S')
Let's implement a simple strategy.
BUY the top 5 stocks with highest last week returns
Assuming we have a weeklyret column,
backtest(data=data, order='B', sort_by='weeklyret', sort_mode=False)
We used sort_mode=False to sort them in descending order.
If you want to test this strategy on a weekly basis, just pass a dataframe with weekly frequency.
See the Introduction notebook in the examples directory for an in depth introduction.
Embedding
Since fastbt is a thin wrapper around existing packages, the following files can be used as standalone without installing the fastbt package
- datasource
- utils
- loaders
Copy these files and just use them in your own modules.
========= History
v0.6.0
- New methods added to
TradeBook
object - mtm - to calculate mtm for open positions
- clear - to clear the existing entries
- helper attributes for positions
order_fill_price
method added to utils to simulate order quantity
v0.5.1
- Simple bug fixes added
v0.5.0
OptionExpiry
class added to calculate option payoffs based on expiry
v0.4.0
- Brokers module deprecation warning added
- Options module revamped
v0.3.0 (2019-03-15)
- More helper functions added to utils
- Tradebook class enhanced
- A Meta class added for event based simulation
v0.2.0 (2018-12-26)
- Backtest from different formats added
- Rolling function added
v0.1.0. (2018-10-13)
- First release on PyPI
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file fastbt-0.6.0.tar.gz
.
File metadata
- Download URL: fastbt-0.6.0.tar.gz
- Upload date:
- Size: 4.7 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba9b8a2daef6e163c2370162135cf3627fd35d86853a667ce18e45a42f54c8b8 |
|
MD5 | 7ddb158ebf9df6569c2df45c26d01374 |
|
BLAKE2b-256 | ceb0ce9934665449f659cc0bf77a9ac0dab2ff44ac4f5d148a7771b21692bbf4 |
File details
Details for the file fastbt-0.6.0-py2.py3-none-any.whl
.
File metadata
- Download URL: fastbt-0.6.0-py2.py3-none-any.whl
- Upload date:
- Size: 4.0 MB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7ee8d1ca21cab5753727916d420bc074e7dd6135ea9e78be34ac2ac6c02f59f3 |
|
MD5 | 114d85566c4e528519102babb8d632a3 |
|
BLAKE2b-256 | 01e4950fdb849addda44ac3f3092fe7207d1d36baed6d9c2f7619d1e1fbcdb40 |