Skip to main content

A fast canonical-correlation-based feature selection method

Project description

FastCan is a python implementation of the paper

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastcan-0.1.22-cp312-cp312-win_amd64.whl (273.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (778.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.22-cp312-cp312-macosx_11_0_arm64.whl (274.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.22-cp312-cp312-macosx_10_9_x86_64.whl (280.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.22-cp311-cp311-win_amd64.whl (361.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (888.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.22-cp311-cp311-macosx_11_0_arm64.whl (360.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.22-cp311-cp311-macosx_10_13_x86_64.whl (372.6 kB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

fastcan-0.1.22-cp310-cp310-win_amd64.whl (361.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (848.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.22-cp310-cp310-macosx_11_0_arm64.whl (361.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.22-cp310-cp310-macosx_10_13_x86_64.whl (372.8 kB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

fastcan-0.1.22-cp39-cp39-win_amd64.whl (362.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (850.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.22-cp39-cp39-macosx_11_0_arm64.whl (361.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.22-cp39-cp39-macosx_10_13_x86_64.whl (373.4 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file fastcan-0.1.22-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.22-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 273.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.22-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d07da380219c40845ec427623a587f599ccfce3d912a168020835fa6f0b307f8
MD5 060a80ee741d0dfc378bf5f8d4e61e8a
BLAKE2b-256 bc5e1630746f2d96e11e372e8f02aac223e4da7365f770a04de0ca298c93545d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64d75a6d16bf1ce9e55b2430670d042a15af692b7127439c098ae5c4f0b0f094
MD5 0e28dce9af87adf0aee12982ba4cb25d
BLAKE2b-256 f083a2eda575ce0d802c5cc007ded006f95a62e768ba6040eef1ad7500ad7cb6

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f2dc5a4d1cc4750aaaa4512a76a3bc2d5dd2e0125dc5e3f3302de8a663a403e
MD5 ad85c9dbfa2f76f4608e65fc793ccb60
BLAKE2b-256 012f433d283440db4aab97fa368edd8308f872d3bb45d29559c978428601907d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec44653ff1dee3e9fa2af2bec95507eaffd4bb8fc3940999a896db8a3ed56cec
MD5 35879cec9d550f423e020be6fdf6636c
BLAKE2b-256 6e3afc2901d85a7dd4cf895de91cc41d9a15c9af19eb85b20abbd516e64aa8b6

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.22-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 361.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.22-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 034593f69150629b590f65bf6820d1bf867fb142f73574ba6ee6e3dd4ed67d8d
MD5 562872e435ba80969a5edda5a09f510e
BLAKE2b-256 c2c9051b07ffd0aaac572c3f299bd1ec6786076348a8ee15adbf86824a431032

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4200f0c67379e78f4f40624bab4418e83b81400a5709a7ef4ba032dc6428301
MD5 2917f1d591c6d13d9bb5811063fa3866
BLAKE2b-256 1343d95248c2ea1813dea85bc5d2c1ef61ce1a2c3d3ea714799d029894be5064

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c631199450dbdc8021be505feedf757cf4a88f0c41834078f7129216d35e31a5
MD5 161c2ed522cb9dc33d4e2254931d5112
BLAKE2b-256 5d33eb8d268bb60e1222296549141685a9c7e5a50d631369d1700fd2a0967281

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8ff665e68ac31126f5f995002020c0318f4c3ff4bf36d94f5fa5bcff99c3d6d3
MD5 d083e8d7721bc9828844f7fb4162ed61
BLAKE2b-256 37df08ee9fc055ee62b03dc34c689bb86aa6602df97715b4a55f8dd097262f9d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.22-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 361.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.22-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1a717b23089f62275dfe619244ff9a3fc035c966854e79b05da6236eb9672072
MD5 055e7aa40bd413f347f6743de45793e4
BLAKE2b-256 2b82a30e3848a2699f9a6fd419c73f7cdc200602a6f298980b1994d5a6fea555

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b343999aeb69ee2700fae40899aebd99cd6e7f8a2cd62318db4757c4dd5fc3d
MD5 fa9ad4d9405f4f4b5af76a2b47b74a96
BLAKE2b-256 6ce6f20c0beebd89fbb4e7f01816173d39750b2c74f509e98df1a327410ad7b3

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b77617ab489cd038f9caabb20aa70e6c711a0a27077ac6743929ed366d1d1a8a
MD5 0d4962f5d8e0f03ccacd10c784e16db5
BLAKE2b-256 166a8adc43323f730f1484543333dbb410fc5524bd2b44fb98214be600fb3558

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 25f10f16e2b70f4d6a1f7a3565a1c180ed79b722f043b8d86c8971a7174cbd81
MD5 23c311b72b2592635726dd55292d5845
BLAKE2b-256 93400b82bd6684877aa92d5da22948d06173b794cec420b3fd2a11566e2e6437

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.22-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 362.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.22-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c08cca0288fa696747703136fd871d19d456f9929571536bec73dbf98ea3c257
MD5 03da899075085e0381019798d690dea5
BLAKE2b-256 856f2b116615e2d5c08a1e56c4fe11a836d592795e2138a5e3cf38a330771ec0

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2c61ee55a9a3f7ed9da39616bd69385cbce69a2eb4565c3f65c61e357e454ce
MD5 3a3b9328f40a2732c9a0411caa0d0eb2
BLAKE2b-256 30c77e784d1a4c9b911f98950f6ae86598ef1dda9522e391bf1cbca0a1dd2259

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cdf213009f822b5b1b5ed6f81fc7c606a2689eefd81ecefadc0e8d5bb836db8a
MD5 83782f9edbac0e577f511d11dff252e7
BLAKE2b-256 cf00848b1935429acd31a74c9fc9649b1f29cac27c2418a067602056cede6c92

See more details on using hashes here.

File details

Details for the file fastcan-0.1.22-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.22-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9ebe4c82013332bb0d04b24bbda72cdf31e18f0a9bd09b3a3975c82de07d5691
MD5 701ed450e3b6c032b27815f7bc6bf413
BLAKE2b-256 a2c8999a602f0730e162863ee09cfb417bb8f091da63869cbdde1783f83e35c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page