Skip to main content

A fast canonical-correlation-based feature selection method

Project description

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastcan-0.1.24-cp312-cp312-win_amd64.whl (274.2 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (779.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.24-cp312-cp312-macosx_11_0_arm64.whl (275.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.24-cp312-cp312-macosx_10_9_x86_64.whl (281.7 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.24-cp311-cp311-win_amd64.whl (362.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (778.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.24-cp311-cp311-macosx_11_0_arm64.whl (361.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.24-cp311-cp311-macosx_10_13_x86_64.whl (373.5 kB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

fastcan-0.1.24-cp310-cp310-win_amd64.whl (362.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.24-cp310-cp310-macosx_11_0_arm64.whl (362.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.24-cp310-cp310-macosx_10_13_x86_64.whl (373.6 kB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

fastcan-0.1.24-cp39-cp39-win_amd64.whl (363.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (740.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.24-cp39-cp39-macosx_11_0_arm64.whl (362.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.24-cp39-cp39-macosx_10_13_x86_64.whl (374.2 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file fastcan-0.1.24-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.24-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 274.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.24-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9ae1e79ae2c9a0653323478f34d593695091061cf2a3531f04293bc9f2d02833
MD5 a6e1b05544ad1d8e1486c632da96c78d
BLAKE2b-256 2848a8d39913f74175f746ce45f0a45520eebc762f5ebf5cf4712806c8d2fed1

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d8fe83957f14798c9cbe04e28927208aa735bcccf3a383db997f1eb134265fb
MD5 ed14bb5d9c3df8d6bd4b11ec4996f776
BLAKE2b-256 c8eda7957047306fcba6d8dfa1896d3f0e531620053911ce2cf77d6937930be9

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a8192a74a0ad7905275dacaf5e29dfa158ad32423f1df46dae94224aaac5c0c5
MD5 c254720074e8acf1870fef008a372cc4
BLAKE2b-256 b4832791a19fb480ca87b767106262433cd5da3072fdaa5b4498e68b5789c81b

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4851b19cae1586562d2a285671b751be5749f6bfae0d198e126155d947135b36
MD5 11bd743498717ee6f887bec3b7022be3
BLAKE2b-256 7b44181e20e7b2ba7caf16e9ef73c2156db604227b2fe3e2ac44ffce464b9332

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.24-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 362.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.24-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8f0e1aba629f28c28c58537b2add4d36eb3ae0b1c580bae3fcf11eee1b3c036b
MD5 ede8973522441b6842cb9b98b702d499
BLAKE2b-256 14820f4a5edb73f59ce8092ab3b2af25de58c02d43cee6ef462874a2c9dd760f

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a74ddbbcdbdb84e60b054d2c8bc3fce6c49af335e8c9b1e48dda59febbe3b0c2
MD5 b3dcb763628795fc7d117eed5dfb98bf
BLAKE2b-256 8bf88ee820fc15546ffe78ff1fd08e424881cf451659c6d9e1ca45dc8b1e384d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fc40a66cd56201db4d2ca367281844c7382eba07f5040d54f8955f5c49d5194
MD5 0864bb536abe44b9ca8ade22628dbe17
BLAKE2b-256 6c9ca69be1057e08884abcdbae29f5c9cbf99d2c80eb9bac31b6352f6de4d083

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ca9c3b1b27727c2892e349a5fa091ac9b0ecd1dce728b764ddc26782945278af
MD5 bdff409b19f58199147b8bb44dae8828
BLAKE2b-256 2399e866d2cc6fd754569f590133c42d8c0bf07e27f40d47f9d5153ff57746c8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.24-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 362.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.24-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f69cc433e9fa215eeab54fcfd3adf75887c9d9eb3138bd18ebb76be9b6d6f665
MD5 5684740eaed2aab97da594cbe85369a9
BLAKE2b-256 25e3fb91b9a8897e262c6469db8cd62c84eca32eb27010dbcee0aa94de67c1d8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1461ff8fe71daece93dab17d556c23e39aa7b5787ce4f1b128ed87026cb1235d
MD5 63c6127eb93eb7fc4d957714eccdd238
BLAKE2b-256 359a294650e1299e10f3c8d065ff26bdde7697a85921b37eb0412c6e7af3fc93

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34968aa528742fa860d8dc3b325861f5724cff449e4d3f8b02bc2951563ff103
MD5 a5f7b8a657d414e0fb59515ac374e830
BLAKE2b-256 3f7fae9ef5782c1aa3bc2113913d171bc9ad314ea7ca754e25a725c80cb00c2f

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 86275232aaeef6134c0ef73751728b5ffe8ec041b1e4f7edc42d6f9aa036299a
MD5 a6644527c6e4aa14952363ac4aca76ab
BLAKE2b-256 7c339a357c65f122e4a681e1250211989b2b1271b17d4969c5cbaee2d308dcb5

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.24-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 363.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.24-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 79ed28bc54b03d42b058f732b233ad91631d1838d5f943901543f1070fbfda23
MD5 84b1440d76842879a765daa2c83a8c7b
BLAKE2b-256 358c278078781598241b513acf52078245ae9390581351d3b636bac83af6ed24

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66700868a311e6463b04409a345d0d9054e1dee86c2187e73b7b7bfbc16b5db2
MD5 7a9c02bcb22080d532d2147d3aac28db
BLAKE2b-256 84863c33435e2935f9fd311dba3399e3c74470cf10c7fde118f394704b154f4a

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1160499aa1c7bc520bf69c3837617a2f81115c230dcce98dd73878dfd00326ab
MD5 0c0c90c1365e2328ccd3a6f4e73d79a0
BLAKE2b-256 5c132c536c54cde64b5ec80ddfcf237cc6bfaf5bdeb1eb021adf432d72c87b46

See more details on using hashes here.

File details

Details for the file fastcan-0.1.24-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.24-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5eb48ea51a6c07bf9bcb14fce95169c9b9e12a0adc874a93c7ca862a05cb48c5
MD5 dd5801741b1a539dcf859a3b7950d695
BLAKE2b-256 fc9311b5131056b85462c0d46e2dee34bc74701278ffa09a984a47e1ce90d793

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page