Skip to main content

A fast canonical-correlation-based feature selection method

Project description

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastcan-0.1.25-cp312-cp312-win_amd64.whl (274.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.25-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (779.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.25-cp312-cp312-macosx_11_0_arm64.whl (275.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.25-cp312-cp312-macosx_10_9_x86_64.whl (281.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.25-cp311-cp311-win_amd64.whl (362.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (778.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.25-cp311-cp311-macosx_11_0_arm64.whl (361.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.25-cp311-cp311-macosx_10_13_x86_64.whl (373.5 kB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

fastcan-0.1.25-cp310-cp310-win_amd64.whl (362.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (738.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.25-cp310-cp310-macosx_11_0_arm64.whl (362.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.25-cp310-cp310-macosx_10_13_x86_64.whl (373.7 kB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

fastcan-0.1.25-cp39-cp39-win_amd64.whl (363.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (740.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.25-cp39-cp39-macosx_11_0_arm64.whl (362.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.25-cp39-cp39-macosx_10_13_x86_64.whl (374.3 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file fastcan-0.1.25-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.25-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 274.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.25-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 09a45fb846a778bc9e610d806a434b34d0a8fdf275a037f82bbb1631fbb018b4
MD5 072bd0606f72abb18808f021287ca3f0
BLAKE2b-256 6e91b82f6b5c9c61869e90ea9e94081b771f7d72193278f3035277c576c5f8ec

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d975feff71a1e916180f6e0c57c503d7c460f370a8bb7851167a4fdac659e10
MD5 78558509818a1dd4dbf36723546a35f5
BLAKE2b-256 0fdd1bde32260f7ecf8becbef2ec8e805deffab3a8cb66948d9ea30cf7947e74

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c73ba5d68b67393ccf2e394528843585b073d0a9111c285cbab192a70bdbb01d
MD5 b43b3a27fbc8724515812fad00a05c7a
BLAKE2b-256 7188e5ec96e1379be51d1c9c20eeac206830cebd60d37e692486a49566c5f753

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70c33450e79c985477e32ae67b03321979d66ac6dc9ac667c0cf813cb386bdc7
MD5 fe824cad5e3c5dc6088a87f924b33cb6
BLAKE2b-256 3a82f2f0860fd8525f20b3595ced184c0f99fb8485a40cb427a9be632d06a847

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.25-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 362.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.25-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a374ba96a98d5ec9addb2ca3d40736f299d3c89144723524b3487e809b3809e6
MD5 35122130a03251cb3a7026225f2e4add
BLAKE2b-256 e0b2c29abc5c1891fc8af195bbd83602130e1ef0bf7a2e7218456a2799738412

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94f54ac596647851d99f55208b933f450a11461158b6a0233d5548dae565f1b4
MD5 0c53bfa931175e666cbd55a8d75fdb66
BLAKE2b-256 ddee0f4d1c1387ce1acb39d2298521e35767acc8b7012e9e9d3c3caf6bbfe81f

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57c9d153d430cd3a4dbb9cce6c7014f337b7aa144b4e6de6e53bc2942bd9a119
MD5 c0a70d4f36c1b0b0df07fbe69914cf2f
BLAKE2b-256 4f0e693d97204993ad0c792673b8a6b87bf80b7a197262690add5a58e7b057ee

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2da1dd0a681a4ee8179d4f8cc07f62ae633cb1e9e4dfc19380ed14ecd7275737
MD5 f447ece55a111f7e5c977583bdf14481
BLAKE2b-256 def61d790e59c7971ecbba6b5028aefb8aa05404724e964a9c29cf6e850d7aec

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.25-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 362.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.25-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fd0c2ca5365f5edbc02661fff51ef78fe491dc65e20c1fc57b726d452873991e
MD5 9fbb518b4b81ebbad482573cb75a5cf2
BLAKE2b-256 5a9f8a4b8506d94d5d66a90f7f80f73cf954f6e565308ab89ee43c15a1bd3e12

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f94ecc3510c573526e5bf04c5a9e9a6428f75a7c61ae645efc0aae689a581178
MD5 93d82a14fb96ff9694d92e359e622751
BLAKE2b-256 5b7e408dc4bf113ff455053207739096ea6d9f9d0264207bd488b83ec4b364a5

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 49e8e0765639abc6eeb6407aabf3642871c05a2b60eb5015e5ecf28d70fd104b
MD5 d6b906053f8b58e1ea1d2c0ba45b4439
BLAKE2b-256 6b82260d20b84216d99a64970037970e55c9c3cc154890b3d84ed6a6dc9272ef

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cdfda888c82bb6af323cd903f19db32fdd6462333652fe335bc72c189ec716fc
MD5 a761bdb345832e6ac84e387d6bdedbcb
BLAKE2b-256 eafc4b67fff2b187d055d8a9f3b9dfb980c7cdec718451a55a065b5632fb3f46

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.25-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 363.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.25-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 13e2b9871589472370766ef69156cfd1d078b62d9552e2139262ffdc89b6362a
MD5 c8573f60efe8465f5d4cdb8246bb1593
BLAKE2b-256 0c03128a515322ac25bb59dc2868de7b7a90988242688ebdbec97cb94d9f0a85

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7954b35578939295ebea2dc49603797785875a73a164d562b54fc9da5290fc75
MD5 2e2347999906b6ca8c18838ca3d70d03
BLAKE2b-256 f95cf02e9081c5080a2937c95167825a97bace3027f434aa1bea75382905eba9

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17c5305ec4d2a5cd3ed115e7aafaea43d5ac6aecb50ea5ea4ab90005e3c41d22
MD5 86acbb59cf2d3efd87cc3548dee24a19
BLAKE2b-256 c3a79518a68cdb2fa99dc5d246e79da9aa5680e04ad8260edccd1f4de79fd6b2

See more details on using hashes here.

File details

Details for the file fastcan-0.1.25-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.25-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d34e288e739dd9b897f7d90e8a80ba68ff50d97bd113a8f68624a91e91ef3493
MD5 91b0e154a38a6411e1442557717502ed
BLAKE2b-256 7ac76a41b20d8dd5688a839d9c426e48610d0444b42035f25b4147d2a76f86a2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page