Skip to main content

A fast canonical-correlation-based feature selection method

Project description

Codecov CI PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastcan-0.1.28-cp312-cp312-win_amd64.whl (135.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.28-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.28-cp312-cp312-macosx_11_0_arm64.whl (96.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.28-cp312-cp312-macosx_10_9_x86_64.whl (105.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.28-cp311-cp311-win_amd64.whl (138.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.28-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.28-cp311-cp311-macosx_11_0_arm64.whl (94.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.28-cp311-cp311-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.1.28-cp310-cp310-win_amd64.whl (138.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.28-cp310-cp310-macosx_11_0_arm64.whl (95.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.28-cp310-cp310-macosx_10_9_x86_64.whl (102.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.1.28-cp39-cp39-win_amd64.whl (138.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.28-cp39-cp39-macosx_11_0_arm64.whl (95.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.28-cp39-cp39-macosx_10_9_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.1.28-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.28-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 135.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.28-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a49a4d1c2b8ae25959a5824aeef5b7bff8df89dfbb4b6dd4b8e3a5812120c6ee
MD5 46bc6da35facb07a7a7da58250decfe5
BLAKE2b-256 088a194a9278d52b15e9f6563f4cbee0b4e0e7a05150fc815beedbebc644dcae

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b42b9f4c0b76ca033f8ae5de60dc6f95c56aea56a3cbc24b1f147b5a77885821
MD5 e772875b18a528023be9c606578cb00a
BLAKE2b-256 779c7e08680e2995b78ae7ce1b84b039da0aea8c58a5ad2864055d4a92b507ab

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 61beda1e1a12c6a949dd911f68f051dfc840c14c58b840482fa6e32866177996
MD5 0b1f9dd5aa92ba94aa9467d03d85ed75
BLAKE2b-256 49197fb6537a01938de432286d7be973391d375e5ea9869761c0d815adf08e44

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d42f7bf61d6410afc15f1723864dfb552d52e9257c8b26a94e10605b69fe323b
MD5 7cbe72c97561870231aa493a014d871d
BLAKE2b-256 e0bc9285a3b6f3fb53ebaa5cf0d781c735c4f04d03093e81c4ebf958737d360d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.28-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 138.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.28-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d2df9382fddc871f9128f38d4c9f2c441024c7c5ec20efed59b8b31f4d220992
MD5 8d5bafc52db19ef0ead53458d9c61fcb
BLAKE2b-256 c225c84d1498dafa546fd5c758b6dece5f6d7cc34d621041cb8e678e218a558d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c39296860fe14032885e778f4006fc60887055fe895aba803a9eb79a91edf704
MD5 d4fea17ff7006babb9585360b25b23d4
BLAKE2b-256 5288f222834c13328d3bf1a21fcb962c6638db6cabf2c760b2f057b7209e389f

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c60999df894b1f0260b68871627f89adb8eeea86fe2eab309bc94262945fe0ba
MD5 f28954d69f204160883b126d2d67cafb
BLAKE2b-256 fb31d1a435a240387e4f022cbd33422ef977cf082de2c1ffc6c139d7f30b2b32

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b4e7fb6b47e95f1aeb194e669d78732066ef38f162efa577033f8acea62e36e
MD5 bac77a2216997a5a2a4f45bc42fc9896
BLAKE2b-256 f03107719b0c8c33f941eb19e917e630d1821e31b478938b9a76b5bd33f62150

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.28-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 138.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.28-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 252833add028b49990d35c78d302c665abbc87865317889e193fbc5f5b344a9a
MD5 989add87600a31a68002b8f7297d17c8
BLAKE2b-256 ff15f7c9ef5962e4645bed53127da1fcdf0a11314b4645406a25345e3c4a0447

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 734cc1914c11de0e8d75fb5758efd13d3c897c1fa95cf6bffa63248272bdc6b4
MD5 361e8867247f106110b48ad128454539
BLAKE2b-256 0916a8621aa5351d18ab6d6299f87e10e8118393fbc7a1a21d8ce25912380bfd

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1d9337c9fbba1f5090483c04992dbae97333b2ca4e027307365b40e9314d3e2e
MD5 e7a12cc944fbe7e29c503c40e5e89ce0
BLAKE2b-256 7c05c1ea25f98633fc39145e94dc0f4bd8eb7b9deb26ab935b7373e14613c1e8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7fbc0244155d1b53b51585d09d179febc9625bd87a32c475c08b3a9da880a4a7
MD5 4dfbf5cec1f57089c8a06590a1ba6ac3
BLAKE2b-256 5a1b509e32efcdd19bf1322a208159fb76c5ae13331fdbc41fb6e945aa9cb650

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.28-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 138.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.28-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9cb50c205565749a2b7ab4b55c7c39d096e2a91a2c83e28eeb8550dfc0ab59fd
MD5 7f4b2336e5aa6386b04cb043069f9fe8
BLAKE2b-256 6061d7a03bf78414193418925c8632a9c7b65d65121065035a5379f19aa49329

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e8a7de4933a0ef96b59d0e06bac72c931355f79cc49109c55a191cb969d0b847
MD5 52dd3e793be6e17762987926633ca5b6
BLAKE2b-256 10233f747c192d8d248c9c8942e2b71183548b167e8d95ca4694a292db392fc9

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9999ecffd4bb48bc072c1b8c9c79d706bfb851cf491369d44f43aa73b45c115e
MD5 bd21852819ef19ee821736dd758b554e
BLAKE2b-256 030662aeaa66463f71c36ad6ed938ef6ff748a45dda03f87f49451585c551c0e

See more details on using hashes here.

File details

Details for the file fastcan-0.1.28-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.28-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 694ebf8f9ef42af2b4151373f7eb18459ba8377eddb92bcb0de78cdcf8eca34a
MD5 159734bb4d6d9d7b8850ec8ce2365412
BLAKE2b-256 3deaa04cd5b273f0c5fb3914aea54f9c36ed243c00d02da1b872ebcfb6c79b4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page