Skip to main content

A fast canonical-correlation-based feature selection method

Project description

Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

fastcan-0.1.33-cp312-cp312-win_amd64.whl (136.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.33-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.33-cp312-cp312-macosx_11_0_arm64.whl (96.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.33-cp312-cp312-macosx_10_9_x86_64.whl (105.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.33-cp311-cp311-win_amd64.whl (138.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.33-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.33-cp311-cp311-macosx_11_0_arm64.whl (94.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.33-cp311-cp311-macosx_10_9_x86_64.whl (102.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.1.33-cp310-cp310-win_amd64.whl (138.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.33-cp310-cp310-macosx_11_0_arm64.whl (95.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.33-cp310-cp310-macosx_10_9_x86_64.whl (102.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.1.33-cp39-cp39-win_amd64.whl (138.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.33-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.33-cp39-cp39-macosx_11_0_arm64.whl (95.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.33-cp39-cp39-macosx_10_9_x86_64.whl (102.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.1.33-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.33-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 136.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.33-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 31c4c573e8b63a0fbbec0b426f889ec8a26a460dd6ced99580190c7bf1b320ba
MD5 b1056d8a3b3d9ecc3e6e6ce4722249ca
BLAKE2b-256 c0b8618986b6cb2da51b2b38391ceef9fee7af7a51b9d46adb09dac3aa6462c8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4a88b16f9d7e2ba7e7021796fa8ee8547ad2378ffd9b4d93578d6077e2d7f43
MD5 823077a4ead754406949a9bc8909612b
BLAKE2b-256 f214750254ff4aa6ec649b1b73f551de9dae8d42385f82494d3bf694985e8201

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b194f658cb2f9429f9a72af2ea8c2cfdb63b3d764403f8a0364890abd77c30d
MD5 3f472002719e6a0298a0682411c487e2
BLAKE2b-256 6a39e5e31f8be1a4f7643a65ffa078dcfcbac067ae9ecd63def208c804e6c7a8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a5b41d569605143a7a996cea3925973eb2a73ed022553d66acc02e9eba7e2cd
MD5 666f3a0b6a7edaf1e80edaf44eec036b
BLAKE2b-256 f0956241aee802d34a078d06c922698c437fc8f3eee8c1c70361f33d85600e43

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.33-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 138.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.33-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 95c4c1e7e663b8355d3f666bef97b6d396a2d077a6175fec273af4fd144543cc
MD5 e2819c43632ffdc9b49db9e9dac64180
BLAKE2b-256 a30e3f403599e448375c781d1f7f2a1fa920274deb76e6c1e045ade997859ad2

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f093df0157f97ff72b71829bdf4ec449be3530fa2bd3b96e934e48c901bbccc9
MD5 0b87816d1eca74016c782c022f1699af
BLAKE2b-256 dd4d9e76931a0214dc02d15b14201007a7cc18dac677cf361ab3a0fa66f3548e

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7e03f0b0d86be235fc96b8078b3f08274e5e11ed7effd1665d116e50602bad85
MD5 339bfcda005a06bd74d9bcc8376b95b1
BLAKE2b-256 2c8ff689086c45486fb96747245e8dd222c122ede197c88f414f15885ba707e9

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bab9246d4b7a8bb97f3ab735a740967730a20be3c54d9515520efc43560d4abe
MD5 f988645512283a9f5cdc37bb78971258
BLAKE2b-256 b67d24a183dd41c91c3a8ba4a0391c0907fd342183696ef9e99ff4fc18708881

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.33-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 138.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.33-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dd5d0731ac6f80683cef27062c78d4eeb7cc80cd03f8bc56772d301e92d570d5
MD5 fbd65d6e9eaca7347138d5d8e338654b
BLAKE2b-256 b12805c78b55edfb1ac024730ed7196ff2739025ad8c62dda4b0d7fd961a7556

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd5924b641db06376a69b3776821c30d5a7562af3f2bcdddbef7b12eab5fc47b
MD5 164c062deedba888f28fbc7fab8aed46
BLAKE2b-256 2d26cd5cf7f5855e9e2563e96e1a9aa26b49ee96e046f9b7e9e54faeb21c0e5f

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc0bf9425c3df261b1a80d2aed52e2d81783a9402ecde427af45cc5685671220
MD5 9f13e1f0657ae2860480a3ad23b8c66c
BLAKE2b-256 e8db6e005c235436ccdf971e713b3df399444e5a23ecf0b7eb1556f6e9f2bf20

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b3e30e0630de169569c452090e8fd0d106cc0c5c41862fbafcd403cbb7b444d
MD5 71cce809937231f888590250157461bd
BLAKE2b-256 eb88c973b3334d86ff1d991b5c69efef5a8ed108b4445c2ab8866f992e9f6114

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.33-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 138.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.33-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8680e1028ed8f718b58b279b6ffda7815b379efd914794abf412a393406d64db
MD5 f42ece8807b5600874e1f77d32e80ff3
BLAKE2b-256 fc58be01c34c450c22acefaf946fe91a147af6b9a240788cf9e60a24048a85a8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37c5faedf847bd976c5d199a74cece19c5d065dfd32391782cf140ed88b5deeb
MD5 220286c13cd9026c49906ea896fbdcf8
BLAKE2b-256 fa0c69651a301250eb6f74b672b88cfa66d4a3f78c79f294d3b139eef76cd271

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c0a144d6879657a596fdde8ece237445d550e2113772982a71fe0e920067e74
MD5 804c888d4a860ef39249834685339378
BLAKE2b-256 a3011850bb70c3b2d0bbbae17d008dd77cd68504a6ae19c7fb7979158e7e230b

See more details on using hashes here.

File details

Details for the file fastcan-0.1.33-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.33-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 311aea8d80e24be888e171ab019c732d5716210a72ca45d58a405dad6a0e6cb3
MD5 3816ed58c3c65862f5e83525fdf060ed
BLAKE2b-256 887d90e5b9c08684d22ed44a51796e6c0abd38c2282da958b13fb099c7364f83

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page