Skip to main content

A fast canonical-correlation-based feature selection method

Project description

Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcan-0.1.34.tar.gz (215.9 kB view details)

Uploaded Source

Built Distributions

fastcan-0.1.34-cp312-cp312-win_amd64.whl (136.0 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.34-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.34-cp312-cp312-macosx_11_0_arm64.whl (96.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.34-cp312-cp312-macosx_10_9_x86_64.whl (105.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.34-cp311-cp311-win_amd64.whl (138.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.34-cp311-cp311-macosx_11_0_arm64.whl (94.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.34-cp311-cp311-macosx_10_9_x86_64.whl (102.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.1.34-cp310-cp310-win_amd64.whl (138.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.34-cp310-cp310-macosx_11_0_arm64.whl (95.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.34-cp310-cp310-macosx_10_9_x86_64.whl (102.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.1.34-cp39-cp39-win_amd64.whl (138.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.34-cp39-cp39-macosx_11_0_arm64.whl (95.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.34-cp39-cp39-macosx_10_9_x86_64.whl (102.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.1.34.tar.gz.

File metadata

  • Download URL: fastcan-0.1.34.tar.gz
  • Upload date:
  • Size: 215.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.34.tar.gz
Algorithm Hash digest
SHA256 92724b55e9ffb6cd146e591b6052cbe136c686bcbaacef3bb690653b0bc06497
MD5 b8fd3fec25f78cdf764176f070460c4e
BLAKE2b-256 01d83d386870e9f74ae4b03a6b439ee14230cc5493958f8ab213757f9f257e47

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.34-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 136.0 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.34-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 08a18bb5d9d3ee8ed08d791f60f5d71808279b70def5f0c9afe8fdad3276fcf9
MD5 ad90129c110382c57d575cbb16fb3813
BLAKE2b-256 9f285692d6795e2c4e69d2654ddfbadc060975e39ee2bf548cd394ba13bc4513

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 79fa8878480b76f28c7b81f0a1cbc7c36096361a7bce4a261275385e6628bd75
MD5 fb6118d7dc47985128a7a95f40f8a0b3
BLAKE2b-256 cdbbbed812903651a3aad246e34c3dc6afdfa97cd94bf2a34f70586d14fa92bc

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 550c804fcf43927ae78871daee8d67bc592d8aa46573cccfb4b352977fdc7cff
MD5 d838d888f701ce835997b0cdb5e4ede9
BLAKE2b-256 d3630bef5b66cf8b9e37173cfdd22c171983a0c84fde37cba180a7445b9602a1

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3ad764be03bc15568e934fcb8f3d2a4a5c7193dcc758860b48491bccf3c6fae
MD5 d5bbf2acb314ed901749f913bf914324
BLAKE2b-256 27cf8cec39ab630da0c9185112210d66f686bffe5b3ef0c0e4cd3e47f97a6b24

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.34-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 138.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.34-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8b4706e60e7541ca55c8e959148df9b95db661d36f780c859433c1632e5d0b95
MD5 9d69d81bfdd2dd4ddf77edd32a988665
BLAKE2b-256 19ced8a4e2e23d200563682cbc5fe69ad5a127cec8a3ec4adbe4157ba7ccd1a1

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f08471053f0a158877f999805afffecdfb17aacbf2e70a61775c847f8490c257
MD5 247d9252e4094e2cf0493561a8adb2b0
BLAKE2b-256 05efd9d91dec71d99e08ec45ca852f8f1889d7aac7c3a3db08f6568cf6de774b

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 659c0948ebe30c2f3d8b93e643dbd019a0ac0f6c8b903b2b34b388c99e1979f7
MD5 5e7dc53139c624e39a1fc47353ed755e
BLAKE2b-256 8ab1ae6bd67a7130d53fa922fa5376438eb391e98eab4c9b8d8b9c32f2ceb156

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3503aba34ecff3ac808a6b3b40331125f6183db34201b49df1aaf8f7646724c
MD5 f223e0c2e1a6faff5b1558d9818b5c25
BLAKE2b-256 8e3c289b29e079ca89760b423e5b95574411a13b382d8151fd5cffbf74c023f0

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.34-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 138.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.34-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8a276051270c5ec1df5d05957769dd717cf6e2e293490c269beb79db05534269
MD5 ab3b941845d6a3fbf34151b28e11b9a6
BLAKE2b-256 6c7c43bac4c5bef81b4aadeca732c5478a72fc65a3402fad6c5cabe00660fd06

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1906487e0dd0d369b2088f0ce57e20ba63ce7b6924e58368cc29ee9a712e6b6c
MD5 78b3bd31655a4b0a44d9ce37af1435de
BLAKE2b-256 8ba152f3d1bbd64bab3ab6fe430609519babd2671441f9a2e46ee0e1f74e09f6

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58dce28cc1806b96754e46dd587ede323d99243deadc74ef26e636fdedd38426
MD5 b9a197a6ce2f233fda8e65b00bf73b55
BLAKE2b-256 f3389ee83718cdc9a3a67cf1f99e4c632ba4e189761fa12dd66eb4350190eb7e

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dda85b62caae7962e36c543f5c3e603861859054916485e7451c582ea1d597ec
MD5 1e12474ba6a2d7ebdbf46e62e924e2d8
BLAKE2b-256 cb0bf2922828b9833463b9503a3f8d6740b14567ccd2a2ebf9ebb38a2e58b5ee

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.34-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 138.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.34-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4dd9eb98eca527cf5dd0afa3260833313c1e92831b777dacc49e9c0d6626740e
MD5 638f02308397d33df51111f16c61f375
BLAKE2b-256 d42a5cdb62b4355fa2bece48b308f0a7d337e60f7b0c80d59d58fc95d498e4d2

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 042f04c3f4bd7eb943be51dae3256b0568dbd3d7bd72da25efad5a59a611a7a2
MD5 5e710681f95aab89e3271933bb9e9f3c
BLAKE2b-256 f2d39e56694b2d1cf86aa112374f5420f79db5a2bc687bce02be930846cb7de6

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 440fb81c8402fcd9dd0360e90f9382f0b3a94d9cd254d3180da5132c77469ceb
MD5 4e500453d09ffa9b96e4695421f7875d
BLAKE2b-256 8c395ef42928610537d4d79460f6bcb211abd9c12c354926efe08f4c3c2484dd

See more details on using hashes here.

File details

Details for the file fastcan-0.1.34-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.34-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d349bea5fe939e08dfaf9b68fb18594620dd2e9ec41640c9daf0ef66eefcb05c
MD5 07f451e90b84dffcd749ed310ebb8c3e
BLAKE2b-256 f328f4809f9134c85862a20cde6c506be21be6aac2da747081d9811428bb56cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page