Skip to main content

A fast canonical-correlation-based feature selection method

Project description

Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcan-0.1.35.tar.gz (216.4 kB view details)

Uploaded Source

Built Distributions

fastcan-0.1.35-cp312-cp312-win_amd64.whl (135.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.35-cp312-cp312-macosx_11_0_arm64.whl (97.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.35-cp312-cp312-macosx_10_9_x86_64.whl (105.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.35-cp311-cp311-win_amd64.whl (139.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.35-cp311-cp311-macosx_11_0_arm64.whl (95.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.35-cp311-cp311-macosx_10_9_x86_64.whl (102.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.1.35-cp310-cp310-win_amd64.whl (140.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.35-cp310-cp310-macosx_11_0_arm64.whl (95.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.35-cp310-cp310-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.1.35-cp39-cp39-win_amd64.whl (140.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.35-cp39-cp39-macosx_11_0_arm64.whl (96.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.35-cp39-cp39-macosx_10_9_x86_64.whl (103.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.1.35.tar.gz.

File metadata

  • Download URL: fastcan-0.1.35.tar.gz
  • Upload date:
  • Size: 216.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.35.tar.gz
Algorithm Hash digest
SHA256 57c91dd7b4cc26da130979fff5d6a3be1c4a3a3e928621c2914534fc3566ed95
MD5 a87d274be107149e8edf349de682592d
BLAKE2b-256 09b92d3c22ad647740257116b996ec91d4e6a06b282c909ede054a6b6b6ac8a4

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.35-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 135.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.35-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9c58290a32ff9be33940f05f3c88bd1787c5003333807aa323c8c82a0ef30a2f
MD5 5a8daf0d97677fe3cdd4c58008ff40e8
BLAKE2b-256 aefe5241256138bca9d83a4d6bf9243c3ab739961bc336ab7cb1c15c315341d8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ef5d703fddf96c2960116a2f3e9af5e679f63bf0f29f28fd80fd4e2306d9994
MD5 f38674b0283dba60590040f0072004df
BLAKE2b-256 491d6264fd4a356ad5cf084ec289f4bdecddf5edcd22c5887fd95b965a324d67

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9fdd294d2446b8e4ff4d541e702c8799236e66aedccd5c3edfba8809a6cab200
MD5 365990a1e4c6d02538ab70390a65be8c
BLAKE2b-256 bc7407279e345ba57e3438c51fe91932176af8e9f06891bc0a2d0275f25d6505

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ae73364778e4ffe1acddcf111c9692429223afbff0c83abbca937ba678226a8
MD5 9577c0c562ced81d7680618bfd16f720
BLAKE2b-256 85abf506b626308041d6d342486d236eb0e02f563a4db6e2ef9bfb137e86e08b

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.35-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 139.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.35-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cd14a7641ff4fa02ad7418e84b21d157c6e1a85f12e1cf93cc28cb4454232022
MD5 913e4954f0e2781bcc021d9eb12af614
BLAKE2b-256 4de57063844f19e5de31f1b1490d2c508d915736d58404c44ea455e18b326cc6

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2e613b8ea667c2199156b9d96797c142d5d361c81281acf2ad1180c1224b597
MD5 c28154a45ec0883559f6fc38ae46be56
BLAKE2b-256 bdfbfe58b3d1491bbd559ee8703e599609c3a71d6ae258934984abe4229146b2

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d43e929c120cc61224d7964ce29643448d2c76011c9fe6c9679732d5ee88b23f
MD5 2306bbb64c7e57dfbeb038edc5b8f823
BLAKE2b-256 89b48b67dd1b3ec51fda52f31977486994515432db71f995149764ad5efefb3a

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a77f393c49f36c6f047d331e92b69fc2b0ce0e4a99d5f8d24d7fee4767765e9
MD5 42a7a5796c91349bfebc028a6d8fc092
BLAKE2b-256 69fcd500cca33de4c94df88a9ae2dd074051a74ff48bb06fcbb050d56af1b1d7

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.35-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 140.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.35-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f144a7f82b52f73da498beb589bcc4c767daa1bae12a00c251c6565efa94d640
MD5 7c12cabbb504c1c409ade138fdf908a3
BLAKE2b-256 6aa35b3c5cfeff9d33dd46e8f3bfbc1147f73369b19846c0ff798d1f10100d1c

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 899f206f3b3ee79a9e4c1aff1551a82f799ebe3db46b4e94bb45fb996d8b085b
MD5 df1b3671198dda685853422a3f6308c0
BLAKE2b-256 9d9623128aa72e9934d3e89f2cad90a5a5e479094c33c19231d5facb856e784c

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f0586482786b781b5cce2b05eabfb2b515ce66a91dbfe4706fcf66ea52df107
MD5 bcafb0313a7af7e3ba70549f13083b6e
BLAKE2b-256 424bb220fe2b60204dca28e6b93031c1b622b3de57a875d80b5d6915ef226b63

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ba9d07fb2e8d25d4b0c2bc9e5bd81257a099fdd0bc654b3e190b8047037dc1a
MD5 56b71734a597c01d696ed91112c78efd
BLAKE2b-256 cc797d24e8266b30ebfe8336c49fbb508f9afccaa0a46eeaf012506b9652f78d

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.35-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 140.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastcan-0.1.35-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10356a7640957ae6c85f2e7ac180da202615745149258313d21b4843a168f96d
MD5 3a0ae90379bf0a8edf6d709633bd1acc
BLAKE2b-256 fa2fe8e90988353d71c45e7b4d1e0847ec5d83bf84b2996a58256a16d67de387

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 293ccb8bdd92fd18d1fd33fd0d1e481a5f584d19a23ee25c8eb6627cb88b6cdc
MD5 525897780d2e75f0f52cf487531435f4
BLAKE2b-256 477d80eb0a4ad535d15442742f125d4cfe8eb617b2a6895c070f40b5b8f1adf5

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a39f390824af4e900bfc21231136b02108b27149e3c57d62c63884fe8959f1dc
MD5 7f0de40cf5b2f4fa87bab93eb66f2ed4
BLAKE2b-256 c4b3fbf293995a213dd0a5805bbc10341a72b9536c6b1d0f44c34d66d2b0cea2

See more details on using hashes here.

File details

Details for the file fastcan-0.1.35-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.35-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1f7ea5644fe08c329597b6e7da7ac1987185fd6eb0571447410eb7127de18db2
MD5 6426d1519faeec275ad95a9adcb0d3ed
BLAKE2b-256 9b36b178efe025f35799db51d1cd472e785b995ebec9484893dfaf64473268dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page