Skip to main content

A fast canonical-correlation-based feature selection method

Project description

Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcan-0.1.37.tar.gz (216.6 kB view details)

Uploaded Source

Built Distributions

fastcan-0.1.37-cp312-cp312-win_amd64.whl (135.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.1.37-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.1.37-cp312-cp312-macosx_11_0_arm64.whl (97.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.1.37-cp312-cp312-macosx_10_9_x86_64.whl (105.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.1.37-cp311-cp311-win_amd64.whl (139.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.1.37-cp311-cp311-macosx_11_0_arm64.whl (95.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.1.37-cp311-cp311-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.1.37-cp310-cp310-win_amd64.whl (140.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (130.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.1.37-cp310-cp310-macosx_11_0_arm64.whl (95.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.1.37-cp310-cp310-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.1.37-cp39-cp39-win_amd64.whl (140.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (131.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.1.37-cp39-cp39-macosx_11_0_arm64.whl (96.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.1.37-cp39-cp39-macosx_10_9_x86_64.whl (103.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.1.37.tar.gz.

File metadata

  • Download URL: fastcan-0.1.37.tar.gz
  • Upload date:
  • Size: 216.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.1.37.tar.gz
Algorithm Hash digest
SHA256 9a7b58cfdfc0633a36e2810fbaaad17e37857b111c1ad7b4863686797de8e45b
MD5 95c6bb8619e3450b2aa6220cc64df102
BLAKE2b-256 e5b3a9fa06c3f3d3e251b4d481934097746660ebec9126219a0635bd3f35da04

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.37-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 135.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.1.37-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5c35b7ab7b5dbd131874fdc5b60204ce51af848685184ddb760f3eb303815316
MD5 163145f60108995f12af0923fb4c760b
BLAKE2b-256 291038da9441a186a781f64ce55e36370a59238e581c0f59e201fd2017584a08

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62c2efd5155ae3fd7748ee245ce9ed50f978a17a35b0263eedefcf3e771b7660
MD5 5da12cdeec9f86fda1da42c6b575bf89
BLAKE2b-256 d6587b02da062d0221f12f2db386ee43011c7f9e344df6f9be46d54633b36fb5

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54190e980632faa7fd499545e96f9a7a01c2dfcb0530dc51982508cfbea073f3
MD5 f0677fc5f6e3bae22a6ce800bdf38806
BLAKE2b-256 0f81ca5991394761339c7ce5cbab8cd642617fd720172e6ce21acd34195e9add

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 205b778b22c033d1965cc1e699e377d69f481f4828c4fcd6e4594959ffa4a17a
MD5 2eec1b0be1d14619b445a40f9bbfa863
BLAKE2b-256 37fa61be97dfc645ad80613e2c4b43cde277e97f17e3e56655aaf0221a0dbbad

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.37-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 139.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.1.37-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6d525ac3fd140e4248378d048dae27fcc03634a9ee7383181cac7d7dde7a456c
MD5 9665a1bb2e8ab895071e8b454461c0d5
BLAKE2b-256 3df410ea2cc3fbb8ab343efd7186767f59a7f806569a34545dbf78856647c99c

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 718a316b8fc99949df21e0a5e4806f2a10c840ca9eb59340745a6f838bfc4506
MD5 10a344e331948cec4c65877a1c0790e1
BLAKE2b-256 fa17e7a88a0f082a77bff7b2f66569c0fe5ce6d8a45ca884a217dceb1f740b54

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66c0aa22860e2bc97299e286931e1e218e9396a9a944415a7d2a590cd1c93870
MD5 d4645a739bf842953b0800546712af5f
BLAKE2b-256 6ddf03a218cc5f23683694d8943e2bfeed33b447dbabe32ac88625ca9c4ea449

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a6b20be706ffd845520139dbed005faa715a015194fc3f4e86acbe03b360fce
MD5 b251229a0a1c33b024f8bbced03d21b5
BLAKE2b-256 7b1a78d21f8a66a5fc8725fec3df034098f70daacde5fcc79e5b86ce60ab7bab

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.37-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 140.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.1.37-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b6d7df546c84ed849eb873ce7ffbd7c8b574b905224cc55010e50fb86f46f719
MD5 9a8651f9dad8cfaae371b7c0675f8789
BLAKE2b-256 6e55ac2163f91c00bcea459cb1e3ef8a08107b2a7ac634237a32b8f274032b17

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9502fadb3e6867799c894193599c48bd11593bdd73473492c799d0d61446a8b
MD5 1d013091a824be8d3f95d2b1cb0e0b6d
BLAKE2b-256 20c805298e9c2812a24daa8d32118ae95368a577138364196daebedf10098614

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d0d1946c29ab84cf67a393d260467a623cd4889d5f1d73f2fcfae70c4efde6ba
MD5 727943ae04d77904efceda6cee25b7e1
BLAKE2b-256 90544ce6c016013ee78347b1a55d0e0db1741bace320d0e633d76b53a4ec53d8

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 01f48ec0289ec782e0c135298da38fe3b37d5eff54b1f0eaa88ab9077975f9c7
MD5 7aa08bf9ef6c4f8061d7ed0ed08a8176
BLAKE2b-256 639c0b79a6e4690d1404ac068ff8cba187e8438c8d9fafbe13ca1b6e3f69b711

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.1.37-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 140.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.1.37-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f188b33974863db9b9e1211dceb733ee87d1c599d8371c69e00a3456c44c5bab
MD5 f8da1a571b9e756c1f2f6a8759afc09e
BLAKE2b-256 43b1fc39fa8076291035b08f9b40466df0551eb3c068a5cde2399a72f9ee2370

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c1c2db5df30003bf37db962c8e3cdef27f0ba98eeb44e264cee88bf8cb8357e
MD5 d33994a440622de0df2e7ca30aff077d
BLAKE2b-256 e1320f9fa3bb0db9ade700926469244889c6827d811a8e43d7e0cde3fd7a09f0

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1ebaad07984298018d7bb3eb46881d0f8c9d0959ad8b99623efd297634a4eebc
MD5 a5f9f9b66fe5a93ac8c93ae176a92f7a
BLAKE2b-256 48c5e2edd378efa80b330134adcdff2d80ee119e955cfe6dd95763969269ea81

See more details on using hashes here.

File details

Details for the file fastcan-0.1.37-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.1.37-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c196fd23079b9850948a218faf5a01c63123ab2731406ebc9297b3c54c3cceeb
MD5 923577833cbda447a7615d94a25f91c8
BLAKE2b-256 f834f9d595ee5136b5754ef992e4b0f6fba8575254033e4a4622dcef97e5b981

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page