Skip to main content

A fast canonical-correlation-based feature selection method

Project description

Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan:

  • Run pip install fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Uninstallation

Uninstall FastCan:

  • Run pip uninstall fastcan

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcan-0.2.0.tar.gz (216.2 kB view details)

Uploaded Source

Built Distributions

fastcan-0.2.0-cp312-cp312-win_amd64.whl (133.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (128.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.2.0-cp312-cp312-macosx_11_0_arm64.whl (94.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl (102.1 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.2.0-cp311-cp311-win_amd64.whl (136.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (127.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.2.0-cp311-cp311-macosx_11_0_arm64.whl (93.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl (100.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.2.0-cp310-cp310-win_amd64.whl (137.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (128.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.2.0-cp310-cp310-macosx_11_0_arm64.whl (93.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (100.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.2.0-cp39-cp39-win_amd64.whl (138.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (128.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.2.0-cp39-cp39-macosx_11_0_arm64.whl (94.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (101.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.2.0.tar.gz.

File metadata

  • Download URL: fastcan-0.2.0.tar.gz
  • Upload date:
  • Size: 216.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.0.tar.gz
Algorithm Hash digest
SHA256 fbd9cb29c606d0809c5eb491755308ae9f56bf256eab4cf5d66d9cf2b01b62a1
MD5 d709b0b2a5227dc2a550d71220e79c57
BLAKE2b-256 63ec49714f54931d083c971caf047b2609b17b517ff1177a3f1a7237dcb62b73

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 133.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 33eea8483f64ee982132896c49e74fa17089859b748f8fe06703af170bad8d8e
MD5 588183f2f172d4d36d93d19883cc32d0
BLAKE2b-256 fc8b19435ebb89427381e3455eebb76a5165d96e6c56d6f6137db7acc588d305

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 255cdad682df3bf2dc5d23184d8f66eb9b3828d6b3bf18f56c9239cb24aa765c
MD5 71fb69dbef330d5e045d58ba43459c73
BLAKE2b-256 d65acb06059a2772bbb4e1aa68700ee5bd420c8a49cd8fd821b7b10eb3aeb7ba

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ca74321f15f92d9ffe39ec8b83672f31947bdee3a0f0bd26f28cb89a59f9f44
MD5 c90a7524784afddd060b679aa395342b
BLAKE2b-256 36706194656022a872a0bb7afd3ef35b2b2dc0e607be43400a10730ab6b626d5

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 05c302b6d2f183e9932e715517d2d3f8094148ea65cdb22e1207a6688fef1466
MD5 a2dea7352ade276849a48ddc1d32718d
BLAKE2b-256 eebeea81eff19f17201b4f41f1efbfede18affadd67eadc3f20168aa8aae9220

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 136.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f804e9cfe9c76280664513e06aa63288cae0c7dda9d3ef3b51ea21f2867b6f05
MD5 eb11b88c72af3ec2ce224e2b4f4f02ea
BLAKE2b-256 84495baf2357f11596084d4f7a9031c5e0a1f50eacaa2fb26d650172de3b8909

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5320aa3d2744f22a27a4b3fed216ef0ec5fb2b82083629c427dc01b8b5f56ff
MD5 a4f0e671090758f9c8ea622d3ec614b1
BLAKE2b-256 70c04f679d716a5f05b924c11f624937637e8c82c937613a36a072feb832abdd

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bdb6b98d5a0e40fefc3a1b3213590b51532ce7717d68821e050a0a3ee5d093e
MD5 590b730908396c44733764365f74e4c4
BLAKE2b-256 2a240de37d3613ad5a6723b7dff2c53ecb7c96200ad9d250305efacd9026e70f

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6481178cf3d2e65d14be10b09111a50d598213b17c15e103534f04613668e56f
MD5 efbdc495d6f55bcf911bbecb7ba4ed80
BLAKE2b-256 a4684b264fb693a16ce711c37360156416a6b40636fb03760bc94cf1767177b7

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 137.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 736f058b1037c208fc27cd125cbcec9f6da2aaf79985bf5ed7b5d924dbf6af0f
MD5 7e7c552efebd97d72d5db31f8a96b6ab
BLAKE2b-256 a9cfda1cd1c4cc979f841a6db9be3727ddb7c0b8fb4be5a66b6fb77ad53e1e14

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5f06315d4f39c7c282c9cf1fe532fcbcac00f77ef42b3ca3ce4cd21a674f239
MD5 a18172234590515e3da936d61d39ca7d
BLAKE2b-256 f0e6c3dbb0edbc35ff719b3b1bdc7eed16811074db689c69e735a038e435698d

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07d4863935203437d57e7440fcc9f1b61fd1c5ada66e88b6ae6baa5880949102
MD5 ebabf201d6de10af8e697796c901918c
BLAKE2b-256 8d185770e05657c0eaf61d05fc0e11a36c627c2682d8426ddc9a617390c71715

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b7e15c88acae883eba9db4c4ce56002fde248b7139c3b55f40fee7e0bb77a005
MD5 bee1596a5d9e80e62a326a9929754827
BLAKE2b-256 897cf126fb77b26c844969b85e4757ee68124d7a537a4e7fb2a69c03e6f8283c

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 138.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cbc3773c5a466a92f025d9dc315dcb88278bf2bf026f291360b298287fd95b17
MD5 3e67dc7bfe7964f7c0b2893ded410245
BLAKE2b-256 03deae79050f9bed7f218529ebe675eb4c476ac71a84229996bd7c6945a6c0cb

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86f2916d7cd282860087cc533d86a1602e2183a75f6f3642e96b16ec0d5f3f40
MD5 346b54a0a3cbd06ee824193688b4f81c
BLAKE2b-256 c54c1459dc9155dc04896189a7663999414fc6d43ec6df6c01721b519496d845

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1ba60ed97e987931b85b962f97f1ee7f6753941118165ad79f169d85e425a7f5
MD5 2b0c7f161b5e42fa5c0a8ebb5e60766d
BLAKE2b-256 c8409f79da153c2927dbea181ad2bd5ecc11dfc49899c37acdd8209e8099c0e9

See more details on using hashes here.

File details

Details for the file fastcan-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09bf83fab2696f79a20b088db1af0facb08125d21caa3b75d60059412b302c0e
MD5 7003491f03f03ddcc44ad166b05b41ba
BLAKE2b-256 27dbcce68c6c8c9fb66848fc7fcc79931ce36a5fe536c9fb5aacf39f66f3aaa2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page