Skip to main content

A fast canonical-correlation-based feature selection method

Project description

conda Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a Python implementation of the following papers.

  1. Zhang, S., & Lang, Z. Q. (2022).

    Orthogonal least squares based fast feature selection for linear classification. Pattern Recognition, 123, 108419.

  2. Zhang, S., Wang, T., Sun L., Worden, K., & Cross, E. J. (2024).

    Canonical-correlation-based fast feature selection for structural health monitoring.

Installation

Install FastCan via PyPi:

  • Run pip install fastcan

Or via conda-forge:

  • Run conda install -c conda-forge fastcan

Examples

>>> from fastcan import FastCan
>>> X = [[ 0.87, -1.34,  0.31 ],
...     [-2.79, -0.02, -0.85 ],
...     [-1.34, -0.48, -2.55 ],
...     [ 1.92,  1.48,  0.65 ]]
>>> y = [0, 1, 0, 1]
>>> selector = FastCan(n_features_to_select=2, verbose=0).fit(X, y)
>>> selector.get_support()
array([ True,  True, False])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcan-0.2.1.tar.gz (207.0 kB view details)

Uploaded Source

Built Distributions

fastcan-0.2.1-cp312-cp312-win_amd64.whl (133.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (128.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.2.1-cp312-cp312-macosx_11_0_arm64.whl (95.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl (102.2 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastcan-0.2.1-cp311-cp311-win_amd64.whl (136.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (127.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.2.1-cp311-cp311-macosx_11_0_arm64.whl (93.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl (100.6 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.2.1-cp310-cp310-win_amd64.whl (137.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (128.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (93.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl (100.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.2.1-cp39-cp39-win_amd64.whl (138.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (128.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (94.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (101.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.2.1.tar.gz.

File metadata

  • Download URL: fastcan-0.2.1.tar.gz
  • Upload date:
  • Size: 207.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.1.tar.gz
Algorithm Hash digest
SHA256 da50d251202b417631cdd8dc150856a8c4be8bbc72e79fecc71437ad7c95a053
MD5 8facb5afdd6bf8b658e2e04a46c6fda5
BLAKE2b-256 cf7d187405f94fbeb5f43e7911e69b3cc24a8673edbbcb75c09cf892c3e7a4ce

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 133.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 15e9abfdb0b8454422612789c057ea66cac4a7ba40610e07a7eb14fd075f4708
MD5 d8727e9faae6687effb5a34e6cd261dd
BLAKE2b-256 404a0802175b91ee74caf7bd37ce7d2a68a94303821213c2b631297bbd23ffa9

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1efdcdd87ab00daae7135bae064671f4803ef7e0aefb587bfa5d6de298a833e7
MD5 be86e21c46bca01fbf10c25e7cac2f2b
BLAKE2b-256 93dfad6fed2784d1921fecd79c97d9744d6d200ecea475c891265ca4e0abdc3c

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a82e281475e427a0fe32b437cdf651373cabc511b0018e148a04f980bd3ae9a3
MD5 f3d31715f649408c1a76f57f552f042a
BLAKE2b-256 ab14cd6f672b19e5e07052771449774c57a588616f8a92d0a2fd35a0682658dc

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8204020e2614807ec24d8195371445af0789585db5cdc911c287fdceddfe2cf9
MD5 fdf5de66e9186230667edf69f781028a
BLAKE2b-256 90cd082b042d69462c817e50039252af243e465cf90784b128e6ea82e2af1d21

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 136.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae08dd7c4020ea33a223c5bd605f400f4e6b5b94b0ff66e14ed1e244c93bbca5
MD5 34ec5eb6aa0bc0d7817056758c199906
BLAKE2b-256 b7a66fa0ec026d842016b9b14cd49720864f8afa5fb845bab1cedd13cba394db

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc05e0a8641bb4e982a1d42b6fb5ee59db646f694c536e670fe6d0cb51e9dca9
MD5 bd0254cc82d7ca1b05c72ffc953335ef
BLAKE2b-256 aa995e7d4e6d3a81a372df2d9f2d591838d932524165a93e9c0b97ad7be5a995

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcdd222fa8a65b54b531939b6c90cc7b44e3a2ee1baebcb23fd5a3d4b4373b3d
MD5 36be3606c6dccadc188e3fb5217dc2d2
BLAKE2b-256 1674c628384c6dae5a32bd022f5b368b0e87eac265a02f37ab3770f4a03a4a95

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ef5d5d29ba623a91c7bd37a85a2c8c2c9751243cab72fb6d353b211f9284ddd
MD5 167b12d0ce656b6f14601133567a7a71
BLAKE2b-256 119ba4c680a8b9643a37916bb261b8a4344f2a51281c20766e3822e247210dd1

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 137.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d8db632577286be2f2687a01e1ca00b864da86af883f98cb1be1762966f1486a
MD5 44787b9d7f0504098aa1e3df2104494f
BLAKE2b-256 4431c9692e5a8a4e4316dd992c972bdfd1cc0ff802291ae8c0e99db570487b18

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d3eb25a80e696b38b8871f4414264355f84c95f8364b071b22732ae82d554ca
MD5 b6e82f1235d7fac4222b472fa1da281c
BLAKE2b-256 8153abdd15b89b073acfd47ef5cc082d0909a96379d5285e5092bc7ef55355c7

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aee8be7bbe4cae350c06fc583d7e43cc37ea9177867a90ccda9d9440dcaf1358
MD5 8ba982815109cc315a884bc5974c66e1
BLAKE2b-256 0f2e7621a862d15bb10778c68e68e6f9d64776f0a03f0f411677c3d5ab51ba59

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f7ddc577e7ff28e4cd0e024eec758260aa1d585679efdbb1516e7e25418ca43
MD5 4a594016c4a587acd4cfc232fdc3a048
BLAKE2b-256 ee49bb8a40032d1d753a2d90a3a2df387ee8ea43b7b832675aa3b2e9068bcd86

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 138.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for fastcan-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 287dc238fe049292007cd5da3a4cb1ccd91bce1328d5ed3471473a5216cd3c4e
MD5 9274714aeaa3acfa5ab237ee9a015b73
BLAKE2b-256 06dc9e5cc3ecf1eb9d3bc35d8ce2f803f5166e5fd2ef70683f4519e37c87bfce

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be3515387c8e1c34890ebd77f3f66c3120a99cd1545ed1ffd6408337bad57e76
MD5 0aeb0918145f35b9a2ea5dd115f095c7
BLAKE2b-256 68626ca1c6a9a5adb1003af1ad2a272f2b5e0eca6622fa871f4e85cb6b56e268

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ecf4af4fe1e875273ca61e8c53074c195ad2902987eb4ed210c0fbe0bee97ccb
MD5 14288604190ae207fb980e48649d6630
BLAKE2b-256 a3fc834d7672c73d74226ecceeb6833061c9f2e111d2ceaf1b8600ae96ccf8ee

See more details on using hashes here.

File details

Details for the file fastcan-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd11d822a7b8dfba6ccadef2a47106442aa81ca8d496da096d10ad5055a2272f
MD5 590f1014a44783d146df26f8814753db
BLAKE2b-256 cf2de5b5061fd761866f0e8e14e7d930188b15c28541a59c96dc3b6c791977bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page