Skip to main content

A fast canonical-correlation-based feature selection method

Project description

conda Codecov CI Doc PythonVersion PyPi Black ruff pixi

FastCan is a feature selection method, which has following advantages:

  1. Extremely fast.

  2. Support unsupervised feature selection.

  3. Support multioutput feature selection.

  4. Skip redundant features.

  5. Evalaute relative usefulness of features.

Check Home Page for more information.

Installation

Install FastCan via PyPi:

  • Run pip install fastcan

Or via conda-forge:

  • Run conda install -c conda-forge fastcan

Getting Started

>>> from fastcan import FastCan
>>> X = [[1, 0], [0, 1]]
>>> y = [1, 0]
>>> FastCan(verbose=0).fit(X, y).get_support()
array([ True, False])

Citation

FastCan is a Python implementation of the following papers.

If you use the h-correlation method in your work please cite the following reference:

@article{ZHANG2022108419,
   title = {Orthogonal least squares based fast feature selection for linear classification},
   journal = {Pattern Recognition},
   volume = {123},
   pages = {108419},
   year = {2022},
   issn = {0031-3203},
   doi = {https://doi.org/10.1016/j.patcog.2021.108419},
   url = {https://www.sciencedirect.com/science/article/pii/S0031320321005951},
   author = {Sikai Zhang and Zi-Qiang Lang},
   keywords = {Feature selection, Orthogonal least squares, Canonical correlation analysis, Linear discriminant analysis, Multi-label, Multivariate time series, Feature interaction},
   }

If you use the eta-cosine method in your work please cite the following reference:

@article{ZHANG2025111895,
   title = {Canonical-correlation-based fast feature selection for structural health monitoring},
   journal = {Mechanical Systems and Signal Processing},
   volume = {223},
   pages = {111895},
   year = {2025},
   issn = {0888-3270},
   doi = {https://doi.org/10.1016/j.ymssp.2024.111895},
   url = {https://www.sciencedirect.com/science/article/pii/S0888327024007933},
   author = {Sikai Zhang and Tingna Wang and Keith Worden and Limin Sun and Elizabeth J. Cross},
   keywords = {Multivariate feature selection, Filter method, Canonical correlation analysis, Feature interaction, Feature redundancy, Structural health monitoring},
   }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcan-0.2.5.tar.gz (235.4 kB view details)

Uploaded Source

Built Distributions

fastcan-0.2.5-cp313-cp313-win_amd64.whl (100.0 kB view details)

Uploaded CPython 3.13 Windows x86-64

fastcan-0.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (193.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

fastcan-0.2.5-cp313-cp313-macosx_11_0_arm64.whl (95.3 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

fastcan-0.2.5-cp313-cp313-macosx_10_13_x86_64.whl (102.7 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

fastcan-0.2.5-cp312-cp312-win_amd64.whl (100.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastcan-0.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (195.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastcan-0.2.5-cp312-cp312-macosx_11_0_arm64.whl (96.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastcan-0.2.5-cp312-cp312-macosx_10_13_x86_64.whl (103.7 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

fastcan-0.2.5-cp311-cp311-win_amd64.whl (98.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastcan-0.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (197.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastcan-0.2.5-cp311-cp311-macosx_11_0_arm64.whl (94.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastcan-0.2.5-cp311-cp311-macosx_10_9_x86_64.whl (101.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastcan-0.2.5-cp310-cp310-win_amd64.whl (98.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastcan-0.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (198.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastcan-0.2.5-cp310-cp310-macosx_11_0_arm64.whl (94.9 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastcan-0.2.5-cp310-cp310-macosx_10_9_x86_64.whl (101.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastcan-0.2.5-cp39-cp39-win_amd64.whl (98.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastcan-0.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (199.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastcan-0.2.5-cp39-cp39-macosx_11_0_arm64.whl (95.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastcan-0.2.5-cp39-cp39-macosx_10_9_x86_64.whl (102.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file fastcan-0.2.5.tar.gz.

File metadata

  • Download URL: fastcan-0.2.5.tar.gz
  • Upload date:
  • Size: 235.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fastcan-0.2.5.tar.gz
Algorithm Hash digest
SHA256 3ed1800362c0fd57ade1cbf9d811d2accde01b533312eedfa9f03e1897fa2f14
MD5 3c525956fa64ae0a2867770c61455607
BLAKE2b-256 525e15432baac5892ffe3f5aeb739320018c7c82a61293b477e4bd929ac68e44

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.5-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 100.0 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fastcan-0.2.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 84db438296adec571d457fc4664e016df145930e1587e36a85927bd5df28fd06
MD5 8fe889c94f96ebaf4f85a13c30b89c48
BLAKE2b-256 e5ef3057e77fbf981df06906885f1d3f9be92355bf2fcf9519ad77223f94a7cc

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e98e6c8aa9354fc5db12c799a9d1a7d44cfb6bf6db8df821a389e7a5b375f21
MD5 7c768acaf1539f13fe40be0c2fd5cef1
BLAKE2b-256 239965a5c39b0da3f068720edd7af25ac01af21410a90ce59cd79beb57ef1dd3

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e72ad4254c450701f01bacbb609f88c65ff0ab3bc2e42d9cd9c248184ba8223
MD5 09a0cb34bbc13e95de21e0f971c1e369
BLAKE2b-256 06587aaa52b339fa7598141d3816801f4cc7aab84e8b8a7a16c9aa59e299b126

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7575f174fe4567a03cc9f03084d18ddcd17fb02bf8e14de1831c636a1d5d94cd
MD5 0cadb889cb314829481a111619796ae2
BLAKE2b-256 f1f57ff210662e2d6c5c2c6e5f399c55306e611c7cbc8a3ae31e0b29cbd79b20

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 100.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fastcan-0.2.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 15f7a85b2d9819bbb79ad7d377bafb4a76133292e4ee2434f9e52616e3f58ff5
MD5 d4612f9510337b83e5de6fc3ef0b25b3
BLAKE2b-256 6eca4fc967dfd2a72d1be5af5d138157c1024b72ec5e4d7ff5df36363febb477

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e23a386323181475d1fedd08b97ab613f73ff814cc286c651c6775d792b3f90
MD5 1a5b3a5d3484fb54ea4d2d305f3f6cb8
BLAKE2b-256 0e180fb793ad243e561493d2870f84885107bc99696b907b7833c7f9884d75aa

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fba67ef92dd1b46fd18e9f35b0044776b3b48f19e8a2b113db6ca8ecddb3de96
MD5 8e82b221d0e4e1aa39c32d8527e860ac
BLAKE2b-256 36de1a0b0c70184eca1342c62b669435c4dc67ff32e4de5bd06103d6e01450e5

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c1a70547b66ec519fb86f17f8e34877f11c7fc429d014b2afb7de19cc7e7c13a
MD5 844ff02454214d17a946cd6c202f0a79
BLAKE2b-256 2d20714267141a2c80727537a95b88dc433919c5a68a72f85e51a093597ac885

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 98.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fastcan-0.2.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 675d9d95ba19cbf958fa12f5da3e22d47f1dcb0d0d4747d7f70c4a67841d136f
MD5 7c8e7879ebfbd31b00ef93658e286b44
BLAKE2b-256 719e20a3575d292f2034a40dbd4f2b80077c7d49fac62193e4bfc07b7471fe70

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbf83c7ca7bb3f7a5c5620a481b36c9ef65258c797aa58fe5236b60c371f0ae0
MD5 592ecc9433b69aef052bf95c843a523f
BLAKE2b-256 eed91fdc8212ff6d22ca783bd9db215ea7e0252eaf6aea87e7f336ebe6dcfe61

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9978000537f541939b304f4e4053e93eb6d340aa19a4c13a3eaec9333a6a1fcf
MD5 d28cdf81fda400d84b5367a28652d381
BLAKE2b-256 0603157027ae5fdca524ea3861dd85672e6f6d91905b1875a87e822c48c1a095

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22aaf5349cff3901d7339e55d65d75b1b291dd9a26dad074aa078283cf157572
MD5 fdb4b9100789d8790d2c284590b106cc
BLAKE2b-256 2d26df04e27f154f0909f3ca80ecba8a02550c494ece24922c64a2cccff3fcdc

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 98.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fastcan-0.2.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 86b887cbef012ad076d1f39273118400c7eab7b877938a2cf7780c50a19dffca
MD5 1bb5dd91f9df3140b618d94d282fb581
BLAKE2b-256 f27569c19e02f6ce610835c2b3a97dd579668bf32ec39c361f9c1fd254d45c56

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b6c8ea89cfab8f3a4e9039c9c60bec797a3991a0bf25623c32fc08b506c8b15
MD5 530e639d374317965d4798a0d5376a0d
BLAKE2b-256 e05e158cae65d42ac32f51f23306806236d703b0c3a403f49b8bf50b5af7fea6

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ccffa07bcb88eccb23f19fb9f0541bb4d16d1e728bd704fa9c42ddf9da42120
MD5 00f003f31d09cfcd81bc65f113bf9a02
BLAKE2b-256 4b79c3b925b56358bfdc615ba3d78156029cc4731e182d14f0ae6c0da15b31a6

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e021e1bced6a608849337daa1dd92788d8d853b380e18cc12492b90e19bffbd3
MD5 41d17eb28602ee645b5cbaf6ed39b52d
BLAKE2b-256 4923d9a5f1b34721ce7522fb420c1ea3daf9361e21df09765aaeff140c773ea8

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastcan-0.2.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 98.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fastcan-0.2.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d3573bcfe8952011828c8bd8b33aacc292b5a15c7c428eaa49c12a985cad934f
MD5 d1bc881c21119e5beafed13c675fc35d
BLAKE2b-256 6024dfb74d57ef70e2860008ed3e5132e8f190b03b924294ca3ee697eb300a5a

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97b07a849978c699e4ceccba1e8c0192334d892220a56aae9a33d660c23cbbcf
MD5 29a25b7f6600f1e4ad770ffce5d8211d
BLAKE2b-256 9e24789e01ac0920655fd32ae0fee0662a7a9eaf65d7331dc37bf457d7632490

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17f146b13e8e9b7ea002d9887711b1ddcf98f6332da560e5477f2953d9c7cd14
MD5 41eb2d0cd91b936d78dd8ee3ac33a1ab
BLAKE2b-256 3261521e2bc57895964d082eec070fe04362d73e47330285b478341a3852fa2f

See more details on using hashes here.

File details

Details for the file fastcan-0.2.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastcan-0.2.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9b44e71c203536c2724ea7919a7dd6d84a901dd0396ac52b5f909af718a2d47f
MD5 9ae12d024cbc09187b174ca831136b80
BLAKE2b-256 e5a6c67db715a9d19c7f124e9cd8a0e68c606713db5d217861433c5411d2ec5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page