Skip to main content

Python supercharged for fastai development

Project description

Welcome to fastcore

Python is a powerful, dynamic language. Rather than bake everything into the language, it lets the programmer customize it to make it work for them. fastcore uses this flexibility to add to Python features inspired by other languages we’ve loved, mixins from Ruby, and currying, binding, and more from Haskell. It also adds some “missing features” and clean up some rough edges in the Python standard library, such as simplifying parallel processing, and bringing ideas from NumPy over to Python’s list type.

Getting started

To install fastcore run: conda install fastcore -c fastai (if you use Anaconda, which we recommend) or pip install fastcore. For an editable install, clone this repo and run: pip install -e ".[dev]". fastcore is tested to work on Ubuntu, macOS and Windows (versions tested are those shown with the -latest suffix here).

fastcore contains many features, including:

  • fastcore.test: Simple testing functions
  • fastcore.foundation: Mixins, delegation, composition, and more
  • fastcore.xtras: Utility functions to help with functional-style programming, parallel processing, and more

To get started, we recommend you read through the fastcore tour.

Contributing

After you clone this repository, please run nbdev_install_hooks in your terminal. This sets up git hooks, which clean up the notebooks to remove the extraneous stuff stored in the notebooks (e.g. which cells you ran) which causes unnecessary merge conflicts.

To run the tests in parallel, launch nbdev_test.

Before submitting a PR, check that the local library and notebooks match.

  • If you made a change to the notebooks in one of the exported cells, you can export it to the library with nbdev_prepare.
  • If you made a change to the library, you can export it back to the notebooks with nbdev_update.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastcore-1.12.12.tar.gz (92.0 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

fastcore-1.12.12-py3-none-any.whl (96.2 kB view details)

Uploaded Python 3

File details

Details for the file fastcore-1.12.12.tar.gz.

File metadata

  • Download URL: fastcore-1.12.12.tar.gz
  • Upload date:
  • Size: 92.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.8

File hashes

Hashes for fastcore-1.12.12.tar.gz
Algorithm Hash digest
SHA256 a113d70630e7aa4e28ceebc4311f1c7c2dc0b748cc138ab7f5c53e475ff438bc
MD5 5e9276e33efc5eeec6818d16df0fe629
BLAKE2b-256 da4eb45883ffd4f1843286279f972262108a6a1c43d5c1237f231a77f3d0670e

See more details on using hashes here.

File details

Details for the file fastcore-1.12.12-py3-none-any.whl.

File metadata

  • Download URL: fastcore-1.12.12-py3-none-any.whl
  • Upload date:
  • Size: 96.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.8

File hashes

Hashes for fastcore-1.12.12-py3-none-any.whl
Algorithm Hash digest
SHA256 bb1a3a3accd62a72bad56af974e0617af078316be5bb5dcc8763b8244c197fa8
MD5 553386ab58c590a58a871aeeb75fbf3a
BLAKE2b-256 ead6bb13c44b5863c0be7a27ef02982eca88f50d717549df1979e85942292239

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page