Skip to main content

fastdatasets: datasets for tfrecords

Project description

The update statement

2023-10-28  support more torch well known datatasets 
2023-07-08: support some nested case
2023-07-02: support arrow parquet
2023-04-28: fix lmdb mutiprocess
2023-02-13: add TopDataset with iterable_dataset and patch
2022-12-07: modify a bug for randomdataset for batch reminder
2022-11-07: add numpy writer and parser,add memory writer and parser
2022-10-29: add kv dataset 

usage

numpy_io

Install

pip install -U fastdatasets

1. Record Write

import data_serialize
from fastdatasets.record import load_dataset, gfile,TFRecordOptions, TFRecordCompressionType, TFRecordWriter

# Example Features结构兼容tensorflow.dataset
def test_write_featrue():
    options = 'GZIP'

    def test_write(filename, N=3, context='aaa'):
        with TFRecordWriter(filename, options=options) as file_writer:
            for _ in range(N):
                val1 = data_serialize.Int64List(value=[1, 2, 3] * 20)
                val2 = data_serialize.FloatList(value=[1, 2, 3] * 20)
                val3 = data_serialize.BytesList(value=[b'The china', b'boy'])
                featrue = data_serialize.Features(feature=
                {
                    "item_0": data_serialize.Feature(int64_list=val1),
                    "item_1": data_serialize.Feature(float_list=val2),
                    "item_2": data_serialize.Feature(bytes_list=val3)
                }
                )
                example = data_serialize.Example(features=featrue)
                file_writer.write(example.SerializeToString())

    test_write('d:/example.tfrecords0', 3, 'file0')
    test_write('d:/example.tfrecords1', 10, 'file1')
    test_write('d:/example.tfrecords2', 12, 'file2')


# 写任意字符串
def test_write_string():
    options = 'GZIP'

    def test_write(filename, N=3, context='aaa'):
        with TFRecordWriter(filename, options=options) as file_writer:
            for _ in range(N):
                # x, y = np.random.random(), np.random.random()
                file_writer.write(context + '____' + str(_))

    test_write('d:/example.tfrecords0', 3, 'file0')
    test_write('d:/example.tfrecords1', 10, 'file1')
    test_write('d:/example.tfrecords2', 12, 'file2')

2. record Simple Writer Demo

# @Time    : 2022/9/18 23:27
import pickle
import data_serialize
import numpy as np
from fastdatasets.record import load_dataset
from fastdatasets.record import RECORD, WriterObject,FeatureWriter,StringWriter,PickleWriter,DataType,NumpyWriter

filename= r'd:\\example_writer.record'

def test_writer(filename):
    print('test_feature ...')
    options = RECORD.TFRecordOptions(compression_type='GZIP')
    f = NumpyWriter(filename,options=options)

    values = []
    n = 30
    for i in range(n):
        train_node = {
            "index": np.asarray(i, dtype=np.int64),
            'image': np.random.rand(3, 4),
            'labels': np.random.randint(0, 21128, size=(10), dtype=np.int64),
            'bdata': np.asarray(b'11111111asdadasdasdaa')
        }

        values.append(train_node)
        if (i + 1) % 10000 == 0:
            f.write_batch( values)
            values.clear()
    if len(values):
        f.write_batch(values)
    f.close()

def test_iterable(filename):
    options = RECORD.TFRecordOptions(compression_type='GZIP')
    datasets = load_dataset.IterableDataset(filename, options=options).parse_from_numpy_writer()
    for i, d in enumerate(datasets):
        print(i, d)

def test_random(filename):
    options = RECORD.TFRecordOptions(compression_type='GZIP')
    datasets = load_dataset.RandomDataset(filename, options=options).parse_from_numpy_writer()
    print(len(datasets))
    for i in range(len(datasets)):
        d = datasets[i]
        print(i, d)

test_writer(filename)
test_iterable(filename)

3. IterableDataset demo

import data_serialize
from fastdatasets.record import load_dataset, gfile, RECORD

data_path = gfile.glob('d:/example.tfrecords*')
options = RECORD.TFRecordOptions(compression_type=None)
base_dataset = load_dataset.IterableDataset(data_path, cycle_length=1,
                                            block_length=1,
                                            buffer_size=128,
                                            options=options,
                                            with_share_memory=True)


def test_batch():
    num = 0
    for _ in base_dataset:
        num += 1
    print('base_dataset num', num)

    base_dataset.reset()
    ds = base_dataset.repeat(2).repeat(2).repeat(3).map(lambda x: x + bytes('_aaaaaaaaaaaaaa', encoding='utf-8'))
    num = 0
    for _ in ds:
        num += 1

    print('repeat(2).repeat(2).repeat(3) num ', num)


def test_torch():
    def filter_fn(x):
        if x == b'file2____2':
            return True
        return False

    base_dataset.reset()
    dataset = base_dataset.filter(filter_fn).interval(2, 0)
    i = 0
    for d in dataset:
        i += 1
        print(i, d)

    base_dataset.reset()
    dataset = base_dataset.batch(3)
    i = 0
    for d in dataset:
        i += 1
        print(i, d)

    # torch.utils.data.IterableDataset
    from fastdatasets.torch_dataset import IterableDataset
    dataset.reset()
    ds = IterableDataset(dataset=dataset)
    for d in ds:
        print(d)


def test_mutiprocess():
    print('mutiprocess 0...')
    base_dataset.reset()
    dataset = base_dataset.shard(num_shards=3, index=0)
    i = 0
    for d in dataset:
        i += 1
        print(i, d)

    print('mutiprocess 1...')
    base_dataset.reset()
    dataset = base_dataset.shard(num_shards=3, index=1)
    i = 0
    for d in dataset:
        i += 1
        print(i, d)

    print('mutiprocess 2...')
    base_dataset.reset()
    dataset = base_dataset.shard(num_shards=3, index=2)
    i = 0
    for d in dataset:
        i += 1
        print(i, d)

4. RandomDataset demo

from fastdatasets.record import load_dataset, gfile, RECORD

data_path = gfile.glob('d:/example.tfrecords*')
options = RECORD.TFRecordOptions(compression_type=None)
dataset = load_dataset.RandomDataset(data_path, options=options,
                                     with_share_memory=True)

dataset = dataset.map(lambda x: x + b"adasdasdasd")
print(len(dataset))

for i in range(len(dataset)):
    print(i + 1, dataset[i])

print('batch...')
dataset = dataset.batch(7)
for i in range(len(dataset)):
    print(i + 1, dataset[i])

print('unbatch...')
dataset = dataset.unbatch()
for i in range(len(dataset)):
    print(i + 1, dataset[i])

print('shuffle...')
dataset = dataset.shuffle(10)
for i in range(len(dataset)):
    print(i + 1, dataset[i])

print('map...')
dataset = dataset.map(transform_fn=lambda x: x + b'aa22222222222222222222222222222')
for i in range(len(dataset)):
    print(i + 1, dataset[i])

print('torch Dataset...')
from fastdatasets.torch_dataset import Dataset

d = Dataset(dataset)
for i in range(len(d)):
    print(i + 1, d[i])

5. leveldb dataset

# @Time    : 2022/10/27 20:37
# @Author  : tk
import numpy as np
from tqdm import tqdm
from fastdatasets.leveldb import DB,load_dataset,WriterObject,DataType,StringWriter,JsonWriter,FeatureWriter,NumpyWriter

db_path = 'd:\\example_leveldb_numpy'

def test_write(db_path):
    options = DB.LeveldbOptions(create_if_missing=True,error_if_exists=False)
    f = NumpyWriter(db_path, options = options)
    keys,values = [],[]
    n = 30
    for i in range(n):
        train_node = {
            "index":np.asarray(i,dtype=np.int64),
            'image': np.random.rand(3,4),
            'labels': np.random.randint(0,21128,size=(10),dtype=np.int64),
            'bdata': np.asarray(b'11111111asdadasdasdaa')
        }
        keys.append('input{}'.format(i))
        values.append(train_node)
        if (i+1) % 10000 == 0:
            f.put_batch(keys,values)
            keys.clear()
            values.clear()
    if len(keys):
        f.put_batch(keys, values)
        
    f.get_writer.put('total_num',str(n))
    f.close()



def test_random(db_path):
    options = DB.LeveldbOptions(create_if_missing=False, error_if_exists=False)
    dataset = load_dataset.RandomDataset(db_path,
                                        data_key_prefix_list=('input',),
                                        num_key='total_num',
                                        options = options)

    dataset = dataset.parse_from_numpy_writer().shuffle(10)
    print(len(dataset))
    for i in tqdm(range(len(dataset)),total=len(dataset)):
        d = dataset[i]
        print(i,d)

test_write(db_path)
test_random(db_path)

6. lmdb dataset

# @Time    : 2022/10/27 20:37
# @Author  : tk

import numpy as np
from tqdm import tqdm
from fastdatasets.lmdb import DB,LMDB,load_dataset,WriterObject,DataType,StringWriter,JsonWriter,FeatureWriter,NumpyWriter

db_path = 'd:\\example_lmdb_numpy'

def test_write(db_path):
    options = DB.LmdbOptions(env_open_flag = 0,
                env_open_mode = 0o664, # 8进制表示
                txn_flag = 0,
                dbi_flag = 0,
                put_flag = 0)

    f = NumpyWriter(db_path, options = options,map_size=1024 * 1024 * 1024)

    keys, values = [], []
    n = 30
    for i in range(n):
        train_node = {
            'image': np.random.rand(3, 4),
            'labels': np.random.randint(0, 21128, size=(10), dtype=np.int64),
            'bdata': np.asarray(b'11111111asdadasdasdaa')
        }
        keys.append('input{}'.format(i))
        values.append(train_node)
        if (i + 1) % 10000 == 0:
            f.put_batch(keys, values)
            keys.clear()
            values.clear()
    if len(keys):
        f.put_batch(keys, values)

    f.get_writer.put('total_num',str(n))
    f.close()



def test_random(db_path):
    options = DB.LmdbOptions(env_open_flag=DB.LmdbFlag.MDB_RDONLY,
                               env_open_mode=0o664,  # 8进制表示
                               txn_flag=LMDB.LmdbFlag.MDB_RDONLY,
                               dbi_flag=0,
                               put_flag=0)
    dataset = load_dataset.RandomDataset(db_path,
                                        data_key_prefix_list=('input',),
                                        num_key='total_num',
                                        options = options)

    dataset = dataset.parse_from_numpy_writer().shuffle(10)
    print(len(dataset))
    for i in tqdm(range(len(dataset)), total=len(dataset)):
        d = dataset[i]
        print(d)

test_write(db_path)
test_random(db_path)

7. arrow dataset

from fastdatasets.arrow.writer import PythonWriter
from fastdatasets.arrow.dataset import load_dataset,arrow


path_file = 'd:/tmp/data.arrow'



with_stream = True
def test_write():
    fs = PythonWriter(path_file,
                        schema={'id': 'int32',
                                'text': 'str',
                                'map': 'map',
                                'map2': 'map_list'
                                },
                        with_stream=with_stream,
                        options=None)
    for i in range(2):
        data = {
            "id": list(range(i * 3,(i+ 1) * 3)),
            'text': ['asdasdasdas' + str(i) for i in range(3)],
            'map': [
                {"a": "aa1" + str(i), "b": "bb1", "c": "ccccccc"},
                {"a": "aa2", "b": "bb2", "c": "ccccccc"},
                {"a": "aa3", "b": "bb3", "c": "ccccccc"},
            ],
            'map2': [

                [
                    {"a": "11" + str(i), "b": "bb", "c": "ccccccc"},
                    {"a": "12", "b": "bb", "c": "ccccccc"},
                    {"a": "13", "b": "bb", "c": "ccccccc"},
                ],
                [
                    {"a": "21", "b": "bb", "c": "ccccccc"},
                    {"a": "22", "b": "bb", "c": "ccccccc"},
                ],
                [
                    {"a": "31", "b": "bb", "c": "ccccccc"},
                    {"a": "32", "b": "bb", "c": "ccccccc"},
                    {"a": "32", "b": "bb", "c": "ccccccc22222222222222"},
                ]
            ]
        }
        # fs.write_batch(data.keys(),data.values())
        status = fs.write_batch(data.keys(),data.values())
        assert status.ok(),status.message()


    fs.close()

def test_random():
    dataset = load_dataset.RandomDataset(path_file,with_share_memory=not with_stream)
    print('total', len(dataset))
    for i in range(len(dataset)):
        print(i,dataset[i])



def test_read_iter():
    dataset = load_dataset.IterableDataset(path_file,with_share_memory=not with_stream,batch_size=1)
    for d in dataset:
        print('iter',d)


test_write()

test_random()

test_read_iter()

8. parquet dataset

from fastdatasets.parquet.writer import PythonWriter
from fastdatasets.parquet.dataset import load_dataset
from tfrecords.python.io.arrow import ParquetReader,arrow


path_file = 'd:/tmp/data.parquet'



def test_write():
    fs = PythonWriter(path_file,
                      schema={'id': 'int32',
                              'text': 'str',
                              'map': 'map',
                              'map2': 'map_list'
                              },
                        parquet_options=dict(write_batch_size = 10))
    for i in range(2):
        data = {
            "id": list(range(i * 3, (i + 1) * 3)),
            'text': ['asdasdasdas' + str(i) for i in range(3)],
            'map': [
                {"a": "aa1", "b": "bb1", "c": "ccccccc"},
                {"a": "aa2", "b": "bb2", "c": "ccccccc"},
                {"a": "aa3", "b": "bb3", "c": "ccccccc"},
            ],
            'map2': [

                [
                    {"a": "11", "b": "bb", "c": "ccccccc"},
                    {"a": "12", "b": "bb", "c": "ccccccc"},
                    {"a": "13", "b": "bb", "c": "ccccccc"},
                ],
                [
                    {"a": "21", "b": "bb", "c": "ccccccc"},
                    {"a": "22", "b": "bb", "c": "ccccccc"},
                ],
                [
                    {"a": "31", "b": "bb", "c": "ccccccc"},
                    {"a": "32", "b": "bb", "c": "ccccccc"},
                    {"a": "32", "b": "bb", "c": "ccccccc22222222222222"},
                ]
            ]
        }
        # fs.write_batch(data.keys(),data.values())
        fs.write_table(data.keys(),data.values())


    fs.close()

def test_random():
    dataset = load_dataset.RandomDataset(path_file)
    print('total', len(dataset))
    for i in range(len(dataset)):
        print(dataset[i])



def test_read_iter():
    dataset = load_dataset.IterableDataset(path_file,batch_size=1)
    for d in dataset:
        print('iter',d)


test_write()

test_random()

test_read_iter()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

fastdatasets-0.9.17-py3-none-any.whl (59.9 kB view details)

Uploaded Python 3

File details

Details for the file fastdatasets-0.9.17-py3-none-any.whl.

File metadata

  • Download URL: fastdatasets-0.9.17-py3-none-any.whl
  • Upload date:
  • Size: 59.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.5.0 importlib_metadata/4.8.2 pkginfo/1.7.1 requests/2.28.2 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.9

File hashes

Hashes for fastdatasets-0.9.17-py3-none-any.whl
Algorithm Hash digest
SHA256 49f9b2334f1bd4c4669c714d5072d0e432710bac653046bdb6cdcfcae7a38e35
MD5 8546018db1023c45d901404be0820284
BLAKE2b-256 fb0e51b4fc048e1342e723e62235f1a98cf827a30c972e6db6608195b0e947a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page