Skip to main content

A Python/C++ library for the analysis of Differential Dynamic Microscopy experiments

Project description

FastDDM

Python GitHub Actions PyPI Version Read the Docs License: GPL v3

FastDDM is a Python package for the analysis of microscopy image sequences using Differential Dynamic Microscopy on CPU and GPU. The features implemented are targeted at the experimental soft matter research community dealing with inert and active/biological samples.

Resources

Example scripts

These examples demonstrate some of the Python API.

Calculation of the image structure function and its azimuthal average:

import fastddm as fddm

file_names = [...]  # define here your list of image file names 
images = fddm.read_images(file_names)

pixel_size = 0.3    # um
frame_rate = 50     # frames per second
    
# compute image structure function and set experimental parameters
dqt = fddm.ddm(img_seq, range(1, len(img_seq)))
dqt.pixel_size = pixel_size
dqt.set_frame_rate(frame_rate)

# compute the azimuthal average
aa = fddm.azimuthal_average(dqt, bins=dqt.shape[-1] - 1, range=(0.0, dqt.ky[-1]))

Contributing to FastDDM

Contributions are welcome via pull requests after agreeing to the Contributors' Agreement. Please, refer to the Developers' section in the documentation.

Please, report bugs and suggest features via the issue tracker.

Citing FastDDM

Please, cite this publication in every work that uses FastDDM:

E. Lattuada, F. Krautgasser, F. Giavazzi, and R. Cerbino.
The Hitchhiker’s Guide to Differential Dynamic Microscopy.
(In preparation.)

License

FastDDM is available under the GNU GPL-3.0 license.

Acknowledgements

  • The fftw-3.3.10 and pybind11 2.12.0 libraries are included in the source tree.
  • This project was funded by the Austrian Science Fund (FWF), Grant Number M 3250-N.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fastddm-0.3.12.tar.gz (42.6 MB view details)

Uploaded Source

Built Distributions

fastddm-0.3.12-cp312-cp312-win_amd64.whl (653.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

fastddm-0.3.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

fastddm-0.3.12-cp312-cp312-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fastddm-0.3.12-cp312-cp312-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

fastddm-0.3.12-cp311-cp311-win_amd64.whl (653.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

fastddm-0.3.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

fastddm-0.3.12-cp311-cp311-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fastddm-0.3.12-cp311-cp311-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fastddm-0.3.12-cp310-cp310-win_amd64.whl (651.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

fastddm-0.3.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

fastddm-0.3.12-cp310-cp310-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

fastddm-0.3.12-cp310-cp310-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

fastddm-0.3.12-cp39-cp39-win_amd64.whl (651.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

fastddm-0.3.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

fastddm-0.3.12-cp39-cp39-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

fastddm-0.3.12-cp39-cp39-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

fastddm-0.3.12-cp38-cp38-win_amd64.whl (651.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

fastddm-0.3.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

fastddm-0.3.12-cp38-cp38-macosx_11_0_arm64.whl (1.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

fastddm-0.3.12-cp38-cp38-macosx_10_9_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file fastddm-0.3.12.tar.gz.

File metadata

  • Download URL: fastddm-0.3.12.tar.gz
  • Upload date:
  • Size: 42.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.12.tar.gz
Algorithm Hash digest
SHA256 984ee8cff161a1ebf706afa406db865ae54864c0ebe6963e396c3333ec62a38c
MD5 a3d4a72a6082e9adcd16068e29fe8a59
BLAKE2b-256 049da1810376145cc0a5ca13fc7fbccc6fab6784a2f0beced2a39151c8cb2833

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.12-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 653.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e141fa310d6f1d0a8c7d0cab3ebf8ed75d14635fae00f4714adae8492cc0e42d
MD5 ca9fa8facec9c567b1ec595ec6fb47b9
BLAKE2b-256 d553926a5a1491deccb84ee1e2c540f7ff578b2c9837bad884828d1397f3e1b4

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 024a55b20b8a1589769043ae26ac5bf0bd497f8ab4ec1c49a4ed30e021110870
MD5 5a90638e941ff8853ef0c624b7665f06
BLAKE2b-256 872567143e3899171d73ac5c7253491b74b15c8c049749dadcf0696a2a105c7d

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2a5b2066a5184c776bd42dd60cf3a2f7d729e4a533aa37e07d5312ae55d0d28
MD5 e41e268ad437eb9e1baa16916d81c182
BLAKE2b-256 c0f7ca0ecff4eb8ca31e4eb772e30960ba6ffda1858db2972a440a38f4bf2f99

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec03d7c848d036daca93c6623af68bde90b545cfba795cd1b3bd606174b526f8
MD5 bbe4e4650d0626c5d26ca53444c787e4
BLAKE2b-256 3acb5f7d94750857248ae6ecf26a034a61861b872214409abcc4b2bee13dc18d

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.12-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 653.5 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 91ef9f4e045cd34a8d5eb92fb11112c7a3d092a17a77e17b61a2023ee8d276ff
MD5 91994feebe4c65612ca262ee90b0ebb1
BLAKE2b-256 6bf64055bb05e59d5d6a89bc87a382019bb1111dad16b882270858a1af38b01c

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ace0c5bc900f7da06e7422e1d7bcabf75e4134959aba3fea0d3cb62f1029829a
MD5 a77bb662292c1a78d87b3d13d25b55a4
BLAKE2b-256 405e1bdac824739ec13da5a137fa5de318e880a586a55e244d0b3ab4cff1159d

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f6d8dcb57d3abafad4a9d40ebd0ac275c2bbdbd2ef83ed92de19571589677f99
MD5 09ca7dcc6ebe7bbbf1e308abc287d3c7
BLAKE2b-256 ebe1c466bcfa67d89339e03c5d27d5a1a9db9fc6ec6ffc52b4489d213b5fd55c

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adae80c0e1f3bbcce0a7eb5fa59ac4d048d9036c298621200e19d36c1fb8ab39
MD5 269d383ab8d6aacfc56568f3e0644b60
BLAKE2b-256 671cccb82494469a789e2b1a53e53cbd9d1983014f609365e48f78044256b8bd

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.12-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 651.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c3a39771b2541361624a57e73bdd45aa609dd5b9a9c7b58d8b3d4c4e174724f5
MD5 3c0aefbac4e7d08abb54d1e692b77943
BLAKE2b-256 d2cce4e5750528e77df500e296812830356acd9be97d7cd19f2d2b4b06863d56

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7fa25ca691721a8545e4e0c93bda8207b974eb229502849920fff2f6a1212ac
MD5 bbedf0a0fd79ab9a269f1aca05061c96
BLAKE2b-256 d259acc08ea7837e3e1cea9d9d73e2414ffcf3fffa4f39e8faa27175d26366c6

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf690c6504a8e575f55499723b965c25b197339889d94437e1e1d77a012ead69
MD5 d92fb6dbadda86cc14bcb866ea3c450f
BLAKE2b-256 2ad2a91734b79c1e6e67ac2042697c49f9de62ba2000fb590a05321a9943057f

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73bf81c4e755588a50ddce6adf4fc6f238272c442d9edfae3e47d4503fcfa91c
MD5 5e16ec2a713834205cac49601014ffa7
BLAKE2b-256 281ca1b36586d4f47ab54e2d0496c624bb9e051b943c005df0b528063ea27bdd

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.12-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 651.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 71d8dd3f1228ff13370e4bfb6486660873fa1a96b31215c8966bf9e2e29cbf2e
MD5 10b2cac5d78bc787429aa79b19fa9419
BLAKE2b-256 68abcf31a4d7340652bae631f16ee1f3d3fa6c68f955d6316ac4a5926610a713

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdf47161b14634404ae87f42e0847afcb8f55da4abae1b44940a3e293287bfc0
MD5 0fa0baf0a9952935c464e82c0500aaae
BLAKE2b-256 77bcfff09815ade4f16ef58bbac4a3beec8443654a66267d7d936d7986b33358

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d43a3055308bf7d438b4272798aaf4c3e11cf8d303bb1a82cd7452e34c413de
MD5 02f404fdc7414d1476bde477ff9a6fc9
BLAKE2b-256 cfe06907d903cda742d7e6ec291ecc65ca31f7ed2d5c38589cee3ea73babebb3

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d26ff25a6e62bab725e569e5a8ea2c60f9dceba9a2038bc240f049b9c101d4d6
MD5 58d7c12cf60eca73573182b6bc210f82
BLAKE2b-256 2e6e8fe4a2c8c05ac612dcf319f05eb06c325ebf4632427e75491d928ebaa791

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: fastddm-0.3.12-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 651.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for fastddm-0.3.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 07e480a6c9dc5c106918f71d1d35d2584fa82a0eed46a227f4aa2f8b4c602e17
MD5 987895aef47cf29e9101bcf712c134e6
BLAKE2b-256 1394a1a200aa2b1c07e0ad2459e722f934c67b2600c69bc809b9b4a537717125

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 999ce1540c754030c0be0c1d7626b56367f1d978f36d9c719c2e26897464e9cd
MD5 169ebfa127a2b0364fd38b166e0c6a21
BLAKE2b-256 df7b3bcb8cfabd5c07bc0911541fbf8d6971534a4d8919454cfcdfe9b80f9b3e

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 63b30978a338768f311d7625decc330651c4ccc3574e5b254253021f5f115a52
MD5 34817e0fe0f5027f41e1c968d893506b
BLAKE2b-256 0dce940c50521c59ab5146f2ee60693b2486865709b44cb0b7c8fef4f1f74aef

See more details on using hashes here.

File details

Details for the file fastddm-0.3.12-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fastddm-0.3.12-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3145c2e3995b3a9e25dd7fe656387e48d66f1198bd08d4c5802ac03a505120b5
MD5 ba8acaf5e1f2d832c407ce7ae510685d
BLAKE2b-256 75dcb919b8a54ec10eed6bead5c051ededa12f722283a25b10ebbd4cafeeb9d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page